Yana Suchikova, Anastasiia Lysak, Sergii Kovachov, Marina Konuhova, Yaroslav Zhydachevskyy, Anatoli I. Popov
{"title":"Investigation of the Impact of Crystalline Arsenolite Oxide Formations on Porous Gallium Arsenide","authors":"Yana Suchikova, Anastasiia Lysak, Sergii Kovachov, Marina Konuhova, Yaroslav Zhydachevskyy, Anatoli I. Popov","doi":"10.1002/pssa.202400365","DOIUrl":null,"url":null,"abstract":"Herein, the impact of arsenolite oxide (As<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>) crystallites on the structural and optical properties of porous gallium arsenide (GaAs) is examined, focusing on understanding the potential passivation effect and its influence on material stability and safety. Utilizing a comprehensive set of analytical methods, including cathodoluminescence (CL) spectroscopy, Raman scattering spectroscopy, and X‐ray diffraction, the interaction between the GaAs substrate and arsenolite crystallites is characterized. The results indicate that the crystallites do not significantly alter the electronic and optical properties of the underlying GaAs, suggesting a possible passivating effect that could enhance device performance. However, concerns regarding arsenolite's environmental stability and toxicity prompt a cautious approach to its application. Herein, the need for further research into conditions conducive to natural oxide formation, exploration of alternative passivation strategies, and development of safe and stable oxide layers is underscored. Reproducible results are necessary to confirm the differences in CL signals between samples, as the current findings are based on single measurements.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"55 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400365","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, the impact of arsenolite oxide (As2O3) crystallites on the structural and optical properties of porous gallium arsenide (GaAs) is examined, focusing on understanding the potential passivation effect and its influence on material stability and safety. Utilizing a comprehensive set of analytical methods, including cathodoluminescence (CL) spectroscopy, Raman scattering spectroscopy, and X‐ray diffraction, the interaction between the GaAs substrate and arsenolite crystallites is characterized. The results indicate that the crystallites do not significantly alter the electronic and optical properties of the underlying GaAs, suggesting a possible passivating effect that could enhance device performance. However, concerns regarding arsenolite's environmental stability and toxicity prompt a cautious approach to its application. Herein, the need for further research into conditions conducive to natural oxide formation, exploration of alternative passivation strategies, and development of safe and stable oxide layers is underscored. Reproducible results are necessary to confirm the differences in CL signals between samples, as the current findings are based on single measurements.
期刊介绍:
The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.