A general approach for controllable surface structuring of metals via through-mask electrochemical micromachining under isotropic etching mode

IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY
Rong Yi, Muhammad Ajmal Khan, Hui Deng
{"title":"A general approach for controllable surface structuring of metals via through-mask electrochemical micromachining under isotropic etching mode","authors":"Rong Yi, Muhammad Ajmal Khan, Hui Deng","doi":"10.1007/s10008-024-06004-3","DOIUrl":null,"url":null,"abstract":"<p>Surface structuring has attracted growing interest in the industry due to its potential to improve the macroscopic properties of workpieces. This work investigated the surface structuring of metals by combining thermal oxide film mask and laser lithography with isotropic etching. The metals were thermally oxidized to form a protective oxide film, laser ablation patterned the thermal oxide film, while electrochemical etching operated in the isotropic mode obtained an array of hemispherical cavities. The isotropic etching potential for different metals is taken from the mass transport region of the polarization curve. The effects of thermal oxide film thickness and laser ablation area on the uniformity of the etching holes were studied. The thermal oxidation of TA2 at 350 °C formed a 20-nm-thick oxide film, while an array of 10 μm radius hemispherical microcavities was fabricated on the laser patterning surface via electrochemical etching at 2 V for 1 min. The surface structuring of stainless steel, pure nickel, and tungsten is highly dependent on the ability of the oxide film to avoid electrochemical reactions. The feasibility of combining thermal oxidation and laser lithography with electrochemical etching is of great value for the surface structuring of metallic materials for biomedical and microsystem applications.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10008-024-06004-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Surface structuring has attracted growing interest in the industry due to its potential to improve the macroscopic properties of workpieces. This work investigated the surface structuring of metals by combining thermal oxide film mask and laser lithography with isotropic etching. The metals were thermally oxidized to form a protective oxide film, laser ablation patterned the thermal oxide film, while electrochemical etching operated in the isotropic mode obtained an array of hemispherical cavities. The isotropic etching potential for different metals is taken from the mass transport region of the polarization curve. The effects of thermal oxide film thickness and laser ablation area on the uniformity of the etching holes were studied. The thermal oxidation of TA2 at 350 °C formed a 20-nm-thick oxide film, while an array of 10 μm radius hemispherical microcavities was fabricated on the laser patterning surface via electrochemical etching at 2 V for 1 min. The surface structuring of stainless steel, pure nickel, and tungsten is highly dependent on the ability of the oxide film to avoid electrochemical reactions. The feasibility of combining thermal oxidation and laser lithography with electrochemical etching is of great value for the surface structuring of metallic materials for biomedical and microsystem applications.

Abstract Image

在各向同性蚀刻模式下通过掩模电化学微加工实现金属可控表面结构的通用方法
由于表面结构化具有改善工件宏观性能的潜力,因此越来越受到业界的关注。这项研究通过将热氧化膜掩膜和激光光刻技术与各向同性蚀刻技术相结合,对金属的表面结构进行了研究。对金属进行热氧化以形成保护性氧化膜,激光烧蚀对热氧化膜进行图案化,而在各向同性模式下进行电化学蚀刻则可获得半球形空腔阵列。不同金属的各向同性蚀刻电位取自极化曲线的质量传输区。研究了热氧化膜厚度和激光烧蚀面积对蚀刻孔均匀性的影响。TA2 在 350 ℃ 的热氧化过程中形成了 20 纳米厚的氧化膜,同时在 2 V 的电压下通过电化学蚀刻 1 分钟,在激光图案化表面上制造出了半径为 10 μm 的半球形微腔阵列。不锈钢、纯镍和钨的表面结构在很大程度上取决于氧化膜避免电化学反应的能力。将热氧化和激光光刻与电化学蚀刻相结合的可行性对于生物医学和微系统应用中的金属材料表面结构化具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
4.00%
发文量
227
审稿时长
4.1 months
期刊介绍: The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry. The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces. The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis. The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信