Weighted holomorphic polynomial approximation

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. Charpentier, N. Levenberg, F. Wielonsky
{"title":"Weighted holomorphic polynomial approximation","authors":"S. Charpentier,&nbsp;N. Levenberg,&nbsp;F. Wielonsky","doi":"10.1007/s13324-024-00943-w","DOIUrl":null,"url":null,"abstract":"<div><p>For <i>G</i> an open set in <span>\\({\\mathbb {C}}\\)</span> and <i>W</i> a non-vanishing holomorphic function in <i>G</i>, in the late 1990’s, Pritsker and Varga (Constr Approx 14, 475-492 1998) characterized pairs (<i>G</i>, <i>W</i>) having the property that any <i>f</i> holomorphic in <i>G</i> can be locally uniformly approximated in <i>G</i> by weighted holomorphic polynomials <span>\\(\\{W(z)^np_n(z)\\}, \\ deg(p_n)\\le n\\)</span>. We further develop their theory in first proving a quantitative Bernstein-Walsh type theorem for certain pairs (<i>G</i>, <i>W</i>). Then we consider the special case where <span>\\(W(z)=1/(1+z)\\)</span> and <i>G</i> is a loop of the lemniscate <span>\\(\\{z\\in {\\mathbb {C}}: |z(z+1)|=1/4\\}\\)</span>. We show the normalized measures associated to the zeros of the <span>\\(n-th\\)</span> order Taylor polynomial about 0 of the function <span>\\((1+z)^{-n}\\)</span> converge to the weighted equilibrium measure of <span>\\({\\overline{G}}\\)</span> with weight |<i>W</i>| as <span>\\(n\\rightarrow \\infty \\)</span>. This mimics the motivational case of Pritsker and Varga (Trans Amer Math Soc 349, 4085-4105 1997) where <i>G</i> is the inside of the Szegő curve and <span>\\(W(z)=e^{-z}\\)</span>. Lastly, we initiate a study of weighted holomorphic polynomial approximation in <span>\\({\\mathbb {C}}^n, \\ n&gt;1\\)</span>.\n</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00943-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For G an open set in \({\mathbb {C}}\) and W a non-vanishing holomorphic function in G, in the late 1990’s, Pritsker and Varga (Constr Approx 14, 475-492 1998) characterized pairs (GW) having the property that any f holomorphic in G can be locally uniformly approximated in G by weighted holomorphic polynomials \(\{W(z)^np_n(z)\}, \ deg(p_n)\le n\). We further develop their theory in first proving a quantitative Bernstein-Walsh type theorem for certain pairs (GW). Then we consider the special case where \(W(z)=1/(1+z)\) and G is a loop of the lemniscate \(\{z\in {\mathbb {C}}: |z(z+1)|=1/4\}\). We show the normalized measures associated to the zeros of the \(n-th\) order Taylor polynomial about 0 of the function \((1+z)^{-n}\) converge to the weighted equilibrium measure of \({\overline{G}}\) with weight |W| as \(n\rightarrow \infty \). This mimics the motivational case of Pritsker and Varga (Trans Amer Math Soc 349, 4085-4105 1997) where G is the inside of the Szegő curve and \(W(z)=e^{-z}\). Lastly, we initiate a study of weighted holomorphic polynomial approximation in \({\mathbb {C}}^n, \ n>1\).

Abstract Image

Abstract Image

加权全形多项式近似法
对于 G 是 \({\mathbb {C}}\) 中的一个开集,W 是 G 中的一个非消失全形函数,在 20 世纪 90 年代末,Pritsker 和 Varga(Constr Approx 14, 475-492 1998)描述了成对函数(G、W)具有这样的性质:在 G 中的任何 f 全形函数都可以在 G 中被加权全形多项式 \(\{W(z)^np_n(z)\}, \ deg(p_n)\le n\) 局部均匀逼近。我们进一步发展了他们的理论,首先证明了某些对(G, W)的伯恩斯坦-瓦尔什式定量定理。然后,我们考虑这样一种特殊情况:(W(z)=1/(1+z)\)且 G 是∞(\{z\in {\mathbb {C}}:|z(z+1)|=1/4\}\).我们证明了与函数 \((1+z)^{-n}\) 的关于 0 的 \(n-th\) 阶泰勒多项式的零点相关的归一化度量会收敛到权重为 |W| 的 \({\overline{G}}\) 的加权均衡度量,即 \(n\rightarrow \infty \)。这模仿了 Pritsker 和 Varga(Trans Amer Math Soc 349, 4085-4105 1997)的激励案例,其中 G 是 Szegő 曲线的内部,而 \(W(z)=e^{-z}\)。最后,我们开始研究 \({\mathbb {C}}^n, \ n>1\) 中的加权全形多项式逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信