Permutation-invariant linear classifiers

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ludwig Lausser, Robin Szekely, Hans A. Kestler
{"title":"Permutation-invariant linear classifiers","authors":"Ludwig Lausser, Robin Szekely, Hans A. Kestler","doi":"10.1007/s10994-024-06561-8","DOIUrl":null,"url":null,"abstract":"<p>Invariant concept classes form the backbone of classification algorithms immune to specific data transformations, ensuring consistent predictions regardless of these alterations. However, this robustness can come at the cost of limited access to the original sample information, potentially impacting generalization performance. This study introduces an addition to these classes—the permutation-invariant linear classifiers. Distinguished by their structural characteristics, permutation-invariant linear classifiers are unaffected by permutations on feature vectors, a property not guaranteed by other non-constant linear classifiers. The study characterizes this new concept class, highlighting its constant capacity, independent of input dimensionality. In practical assessments using linear support vector machines, the permutation-invariant classifiers exhibit superior performance in permutation experiments on artificial datasets and real mutation profiles. Interestingly, they outperform general linear classifiers not only in permutation experiments but also in permutation-free settings, surpassing unconstrained counterparts. Additionally, findings from real mutation profiles support the significance of tumor mutational burden as a biomarker.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"65 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06561-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Invariant concept classes form the backbone of classification algorithms immune to specific data transformations, ensuring consistent predictions regardless of these alterations. However, this robustness can come at the cost of limited access to the original sample information, potentially impacting generalization performance. This study introduces an addition to these classes—the permutation-invariant linear classifiers. Distinguished by their structural characteristics, permutation-invariant linear classifiers are unaffected by permutations on feature vectors, a property not guaranteed by other non-constant linear classifiers. The study characterizes this new concept class, highlighting its constant capacity, independent of input dimensionality. In practical assessments using linear support vector machines, the permutation-invariant classifiers exhibit superior performance in permutation experiments on artificial datasets and real mutation profiles. Interestingly, they outperform general linear classifiers not only in permutation experiments but also in permutation-free settings, surpassing unconstrained counterparts. Additionally, findings from real mutation profiles support the significance of tumor mutational burden as a biomarker.

Abstract Image

置换不变线性分类器
不变概念类是不受特定数据转换影响的分类算法的支柱,可确保预测结果的一致性,而不受这些变化的影响。然而,这种鲁棒性的代价可能是对原始样本信息的访问有限,从而可能影响泛化性能。本研究介绍了这些分类器中的新成员--置换不变线性分类器。包络不变线性分类器的结构特点是不受特征向量包络变换的影响,这是其他非恒定线性分类器无法保证的。本研究描述了这一新概念类别的特征,强调了其与输入维度无关的恒定能力。在使用线性支持向量机进行的实际评估中,包覆不变分类器在人工数据集和真实突变剖面的包覆实验中表现出卓越的性能。有趣的是,它们不仅在变异实验中表现优于一般线性分类器,而且在无变异设置中表现也优于无约束分类器。此外,真实突变图谱的研究结果也证明了肿瘤突变负荷作为生物标记物的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine Learning
Machine Learning 工程技术-计算机:人工智能
CiteScore
11.00
自引率
2.70%
发文量
162
审稿时长
3 months
期刊介绍: Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信