Spray-pyrolysis synthesis of CuMnO2 with the potential for photoelectrocatalysis

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Benjamin Martinez, Chun-Hong Kuo, Ming-Hsi Chiang
{"title":"Spray-pyrolysis synthesis of CuMnO2 with the potential for photoelectrocatalysis","authors":"Benjamin Martinez,&nbsp;Chun-Hong Kuo,&nbsp;Ming-Hsi Chiang","doi":"10.1002/jccs.202400193","DOIUrl":null,"url":null,"abstract":"<p>Amidst the global endeavor toward sustainable energy sources, photocatalysis appears as a promising gateway toward the production of solar fuels, in particular hydrogen. Hydrogen is currently a crucial reagent for vital industries such as petrol desulfurization, iron reduction and ammonia production, so the decarbonization of its production is a major challenge. CuMnO<sub>2</sub> (CMO), a p-type semiconductor, has been shown to enhance the efficiency of catalysts such as TiO<sub>2</sub> for the photoelectrocatalytic water splitting reaction. However, since pure CMO thin films have never been reported, its potential and limitations remain elusive. We used spray pyrolysis as a low-cost synthesis technique to simplify and accelerate the synthesis of CMO thin films directly on FTO substrates. CMO prepared in this manner exhibits activity toward photoeletrocatalytic water splitting and O<sub>2</sub> reduction. The activity has been found to be highly dependent on synthesis conditions, especially on the ratio and volume of precursors.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400193","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Amidst the global endeavor toward sustainable energy sources, photocatalysis appears as a promising gateway toward the production of solar fuels, in particular hydrogen. Hydrogen is currently a crucial reagent for vital industries such as petrol desulfurization, iron reduction and ammonia production, so the decarbonization of its production is a major challenge. CuMnO2 (CMO), a p-type semiconductor, has been shown to enhance the efficiency of catalysts such as TiO2 for the photoelectrocatalytic water splitting reaction. However, since pure CMO thin films have never been reported, its potential and limitations remain elusive. We used spray pyrolysis as a low-cost synthesis technique to simplify and accelerate the synthesis of CMO thin films directly on FTO substrates. CMO prepared in this manner exhibits activity toward photoeletrocatalytic water splitting and O2 reduction. The activity has been found to be highly dependent on synthesis conditions, especially on the ratio and volume of precursors.

喷雾热解合成具有光电催化潜力的 CuMnO2
在全球努力开发可持续能源的过程中,光催化技术似乎是生产太阳能燃料(尤其是氢气)的一条大有可为的途径。目前,氢气是汽油脱硫、铁还原和合成氨生产等重要行业的关键试剂,因此氢气生产的去碳化是一项重大挑战。CuMnO2 (CMO) 是一种 p 型半导体,已被证明可以提高 TiO2 等催化剂在光电催化水分离反应中的效率。然而,由于纯 CMO 薄膜从未被报道过,其潜力和局限性仍然难以捉摸。我们利用喷雾热解这一低成本合成技术,简化并加速了直接在 FTO 基底上合成 CMO 薄膜的过程。用这种方法制备的 CMO 具有光电催化水分离和氧气还原的活性。研究发现,这种活性与合成条件有很大关系,特别是与前驱体的比例和体积有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信