Cyclodextrin inclusion complex and amorphous solid dispersions as formulation approaches for enhancement of curcumin’s solubility and nasal epithelial membrane permeation
Carmen Schoeman, Suzanne van Niekerk, Wilna Liebenberg, Josias Hamman
{"title":"Cyclodextrin inclusion complex and amorphous solid dispersions as formulation approaches for enhancement of curcumin’s solubility and nasal epithelial membrane permeation","authors":"Carmen Schoeman, Suzanne van Niekerk, Wilna Liebenberg, Josias Hamman","doi":"10.1186/s43094-024-00656-8","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Curcumin is a compound that occurs in the rhizomes of the turmeric plant (<i>Curcuma longa</i>) and has shown potential for the treatment of illnesses including certain neurodegenerative diseases. The bioavailability of curcumin is hindered by its extremely poor aqueous solubility.</p><h3>Results</h3><p>This study aimed to apply formulation strategies such as inclusion complex formation with hydroxypropyl-β-cyclodextrin (HPβCD), as well as amorphous solid dispersion (ASD) formation with poly(vinylpyrrolidone-<i>co</i>-vinyl acetate) (PVP VA64) and hydroxypropyl methylcellulose (HPMC) to increase curcumin’s solubility and thereby its nasal epithelial membrane permeation. The curcumin formulations were evaluated by means of DSC, TGA, FT-IR, XRPD, microscopic imaging, aqueous solubility and membrane permeation across nasal respiratory and olfactory epithelial membranes. The solubility of curcumin was substantially increased by the formulations from 8.4 µg/ml for the curcumin raw material to 79.0 µg/ml for the HPβCD inclusion complex, 256.4 µg/ml for the HPMC ASD and 314.9 µg/ml for the PVP VA64 ASD. The HPMC ASD only slightly changed the membrane permeation of curcumin, while the PVP VA64 ASD decreased the membrane permeation of curcumin. The HPβCD inclusion complex enhanced the nasal epithelial membrane permeation of curcumin statistically significantly across the olfactory epithelial tissue and extensively across the respiratory epithelial tissue.</p><h3>Conclusion</h3><p>Complexation of curcumin with HPβCD enhanced the solubility of curcumin and thereby also increased its permeation across excised nasal respiratory and olfactory epithelial tissue. This indicated high potential of the curcumin-HPβCD complex for nose-to-brain delivery of curcumin for treatment of neurodegenerative diseases by means of intranasal administration.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-024-00656-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-024-00656-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Curcumin is a compound that occurs in the rhizomes of the turmeric plant (Curcuma longa) and has shown potential for the treatment of illnesses including certain neurodegenerative diseases. The bioavailability of curcumin is hindered by its extremely poor aqueous solubility.
Results
This study aimed to apply formulation strategies such as inclusion complex formation with hydroxypropyl-β-cyclodextrin (HPβCD), as well as amorphous solid dispersion (ASD) formation with poly(vinylpyrrolidone-co-vinyl acetate) (PVP VA64) and hydroxypropyl methylcellulose (HPMC) to increase curcumin’s solubility and thereby its nasal epithelial membrane permeation. The curcumin formulations were evaluated by means of DSC, TGA, FT-IR, XRPD, microscopic imaging, aqueous solubility and membrane permeation across nasal respiratory and olfactory epithelial membranes. The solubility of curcumin was substantially increased by the formulations from 8.4 µg/ml for the curcumin raw material to 79.0 µg/ml for the HPβCD inclusion complex, 256.4 µg/ml for the HPMC ASD and 314.9 µg/ml for the PVP VA64 ASD. The HPMC ASD only slightly changed the membrane permeation of curcumin, while the PVP VA64 ASD decreased the membrane permeation of curcumin. The HPβCD inclusion complex enhanced the nasal epithelial membrane permeation of curcumin statistically significantly across the olfactory epithelial tissue and extensively across the respiratory epithelial tissue.
Conclusion
Complexation of curcumin with HPβCD enhanced the solubility of curcumin and thereby also increased its permeation across excised nasal respiratory and olfactory epithelial tissue. This indicated high potential of the curcumin-HPβCD complex for nose-to-brain delivery of curcumin for treatment of neurodegenerative diseases by means of intranasal administration.
期刊介绍:
Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.