{"title":"Effect of Interfacial Heat Transfer on Hydrothermal Wave Propagation of Nanofluid Thermocapillary Convection in Rectangular Cavity","authors":"Yanni Jiang, Cheng Dai, Xiaoming Zhou","doi":"10.1007/s12217-024-10129-5","DOIUrl":null,"url":null,"abstract":"<div><p>For surface tension driven flow, interfacial heat transfer can alter the flow regime and its transition condition. This paper investigates the influence of interfacial heat transfer on critical transition and hydrothermal wave propagation of nanofluid thermocapillary convection for the first time, and three environment temperature conditions is considered, e.g. the cold-end temperature, the average temperature of the hot and cold-end, and a linear temperature distribution. The results indicate that, as nanoparticles volume fraction increases the critical Marangoni number decreases under various ambient temperature conditions, meanwhile, the fundamental frequency of the velocity oscillations exhibits a linear decrease, and the propagation angle and temperature fluctuation range of hydrothermal waves are decreased. Furthermore, for the three ambient temperature scenarios, the linear temperature distribution condition can amplify the propagation angle and temperature fluctuation range of hydrothermal waves. Consequently, the manipulation of both the nanoparticle volume fraction and ambient temperature condition provides a means to control the instability of nanofluid thermocapillary convection.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10129-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For surface tension driven flow, interfacial heat transfer can alter the flow regime and its transition condition. This paper investigates the influence of interfacial heat transfer on critical transition and hydrothermal wave propagation of nanofluid thermocapillary convection for the first time, and three environment temperature conditions is considered, e.g. the cold-end temperature, the average temperature of the hot and cold-end, and a linear temperature distribution. The results indicate that, as nanoparticles volume fraction increases the critical Marangoni number decreases under various ambient temperature conditions, meanwhile, the fundamental frequency of the velocity oscillations exhibits a linear decrease, and the propagation angle and temperature fluctuation range of hydrothermal waves are decreased. Furthermore, for the three ambient temperature scenarios, the linear temperature distribution condition can amplify the propagation angle and temperature fluctuation range of hydrothermal waves. Consequently, the manipulation of both the nanoparticle volume fraction and ambient temperature condition provides a means to control the instability of nanofluid thermocapillary convection.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.