{"title":"Depth to the minimal surface and radius of the entrance to the black hole","authors":"Seong-Hun Paeng","doi":"10.1016/j.geomphys.2024.105267","DOIUrl":null,"url":null,"abstract":"<div><p>An asymptotically flat manifold is the union of an almost flat region and a compact non flat region. If there exists a black hole, we will call the boundary of non flat region the <em>entrance</em> to the black hole. Also, we will call the distance from the entrance to the outermost minimal surface the <em>depth</em>. We use an integral norm of Ricci curvature to obtain positive lower bounds on the depth and the radius of the entrance. Also we obtain an upper bound of the number of ends from the integral norm of Ricci curvature.</p></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024001682","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
An asymptotically flat manifold is the union of an almost flat region and a compact non flat region. If there exists a black hole, we will call the boundary of non flat region the entrance to the black hole. Also, we will call the distance from the entrance to the outermost minimal surface the depth. We use an integral norm of Ricci curvature to obtain positive lower bounds on the depth and the radius of the entrance. Also we obtain an upper bound of the number of ends from the integral norm of Ricci curvature.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity