A Nanostructured Phenazine-based Conjugated Microporous Polymer Hybrid Anode Boosts Power and Practicability of Organic-Manganese Hydronium-ion Batteries
Rebecca Grieco, Alba Fombona-Pascual, Nagaraj patil, Diego Alván, Marta Liras, Rebeca Marcilla
{"title":"A Nanostructured Phenazine-based Conjugated Microporous Polymer Hybrid Anode Boosts Power and Practicability of Organic-Manganese Hydronium-ion Batteries","authors":"Rebecca Grieco, Alba Fombona-Pascual, Nagaraj patil, Diego Alván, Marta Liras, Rebeca Marcilla","doi":"10.1002/batt.202400346","DOIUrl":null,"url":null,"abstract":"Organic-manganese hydronium-ion batteries are gaining attention for their safety, sustainability, and high rate capabilities. However, their electrochemical performance faces challenges due to organic active-materials' inferior properties, including low conductivity and solubility, and limited content (<60 wt%) and loading (<2 mg/cm2) in the anode. To address this, we developed a high-performance battery using a phenazine-based conjugated microporous polymer hybrid anode (IEP-27-SR), utilizing hydronium-ion coordination/un-coordination chemistry. The IEP-27-SR features enhanced structural characteristics, such as high BET specific surface area, mixed micro-/mesoporosity, nanostructurization, and hybridization, enabling rapid hydronium-ion mobility. The resulting IEP-27-SR//MnO2@GF full-cell demonstrates high capacity (101 mAh/g at 2C), excellent rate performance (41 mAh/g at 100C), ultrafast-charging capability (80% charged in 18 seconds), and impressive cyclability with 83% capacity retention over 20400 cycles at 30C with a regular polymer mass loading of 2 mg/cm2, despite its high content (80 wt%) in the anode. Moreover, it shows operability at low temperatures (63 mAh/g at -40 ºC). Most importantly, full-cell with a high-mass-loading polymer anode (30 mg/cm2) achieves practically relevant areal capacity (3.4 mAh/cm2 at 4 mA/cm2) and sustains 2 mAh/cm2 under an extremely high areal current (50 mA/cm2). This breakthrough highlights the progress of organic hydronium-ion batteries, representing progress toward practical battery solutions","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"13 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202400346","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic-manganese hydronium-ion batteries are gaining attention for their safety, sustainability, and high rate capabilities. However, their electrochemical performance faces challenges due to organic active-materials' inferior properties, including low conductivity and solubility, and limited content (<60 wt%) and loading (<2 mg/cm2) in the anode. To address this, we developed a high-performance battery using a phenazine-based conjugated microporous polymer hybrid anode (IEP-27-SR), utilizing hydronium-ion coordination/un-coordination chemistry. The IEP-27-SR features enhanced structural characteristics, such as high BET specific surface area, mixed micro-/mesoporosity, nanostructurization, and hybridization, enabling rapid hydronium-ion mobility. The resulting IEP-27-SR//MnO2@GF full-cell demonstrates high capacity (101 mAh/g at 2C), excellent rate performance (41 mAh/g at 100C), ultrafast-charging capability (80% charged in 18 seconds), and impressive cyclability with 83% capacity retention over 20400 cycles at 30C with a regular polymer mass loading of 2 mg/cm2, despite its high content (80 wt%) in the anode. Moreover, it shows operability at low temperatures (63 mAh/g at -40 ºC). Most importantly, full-cell with a high-mass-loading polymer anode (30 mg/cm2) achieves practically relevant areal capacity (3.4 mAh/cm2 at 4 mA/cm2) and sustains 2 mAh/cm2 under an extremely high areal current (50 mA/cm2). This breakthrough highlights the progress of organic hydronium-ion batteries, representing progress toward practical battery solutions
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.