Hierarchical Composites Patterned via 3D Printed Cellular Fluidics

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hawi B. Gemeda, Nikola A. Dudukovic, Cheng Zhu, Anna Guell Izard, Aldair E. Gongora, Joshua R. Deotte, Johnathan T. Davis, Eric B. Duoss, Erika J. Fong
{"title":"Hierarchical Composites Patterned via 3D Printed Cellular Fluidics","authors":"Hawi B. Gemeda,&nbsp;Nikola A. Dudukovic,&nbsp;Cheng Zhu,&nbsp;Anna Guell Izard,&nbsp;Aldair E. Gongora,&nbsp;Joshua R. Deotte,&nbsp;Johnathan T. Davis,&nbsp;Eric B. Duoss,&nbsp;Erika J. Fong","doi":"10.1002/admt.202400104","DOIUrl":null,"url":null,"abstract":"<p>Additive manufacturing of freeform structures containing multiple materials with deterministic spatial arrangement and interactions remains a challenge for most 3D printing processes, due to complex fabrication tool requirements and limitations in printability of some material classes. Here, a versatile method is reported to produce architected composites using the concept of cellular fluidics, in which lattices of unit cells are used as templating scaffolds to guide flowable infill materials in a programmed spatial pattern, upon which they are cured in place to produce a deterministically ordered multimaterial solid. The lattice design relies on the unit cell size, type, strut diameter, surface wetting, and distribution of cellular structures to control liquid flow and retention. Individual unit cells are tuned to achieve reliable infilling and combined into higher-order architectures to achieve multiscale composite materials with disparate mechanical properties, including those considered non-printable. Lattice design considerations for leveraging capillary phenomena and demonstrate several methods of patterning polymers in 3D-printed cellular fluidic structures are presented. The concept of tuning the compressive response of an architected composite using a flexible-elastomer as the lattice and a stiff-epoxy as the infill material is illustrated.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 20","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400104","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Additive manufacturing of freeform structures containing multiple materials with deterministic spatial arrangement and interactions remains a challenge for most 3D printing processes, due to complex fabrication tool requirements and limitations in printability of some material classes. Here, a versatile method is reported to produce architected composites using the concept of cellular fluidics, in which lattices of unit cells are used as templating scaffolds to guide flowable infill materials in a programmed spatial pattern, upon which they are cured in place to produce a deterministically ordered multimaterial solid. The lattice design relies on the unit cell size, type, strut diameter, surface wetting, and distribution of cellular structures to control liquid flow and retention. Individual unit cells are tuned to achieve reliable infilling and combined into higher-order architectures to achieve multiscale composite materials with disparate mechanical properties, including those considered non-printable. Lattice design considerations for leveraging capillary phenomena and demonstrate several methods of patterning polymers in 3D-printed cellular fluidic structures are presented. The concept of tuning the compressive response of an architected composite using a flexible-elastomer as the lattice and a stiff-epoxy as the infill material is illustrated.

Abstract Image

Abstract Image

通过三维打印细胞流体学技术实现分层复合材料图案化
由于复杂的制造工具要求和某些材料类别在可打印性方面的限制,对于大多数三维打印工艺而言,以确定性的空间排列和相互作用制造包含多种材料的自由形态结构仍是一项挑战。这里报告了一种利用细胞流体学概念生产建筑复合材料的多功能方法,其中单元格被用作模板支架,以编程空间模式引导可流动填充材料,然后将其固化到位,生产出确定有序的多材料固体。晶格设计依靠单元格的大小、类型、支杆直径、表面润湿性和单元格结构的分布来控制液体的流动和滞留。对单个单元格进行调整,以实现可靠的填充,并将其组合成更高阶的结构,从而获得具有不同机械性能的多尺度复合材料,包括那些被认为不可打印的材料。介绍了利用毛细现象的晶格设计考虑因素,并演示了在三维打印细胞流体结构中绘制聚合物图案的几种方法。此外,还介绍了使用柔性弹性体作为晶格和硬质环氧树脂作为填充材料来调整建筑复合材料压缩响应的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信