Two Variable Logic with Ultimately Periodic Counting

IF 1.2 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Michael Benedikt, Egor V. Kostylev, Tony Tan
{"title":"Two Variable Logic with Ultimately Periodic Counting","authors":"Michael Benedikt, Egor V. Kostylev, Tony Tan","doi":"10.1137/22m1504792","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Computing, Volume 53, Issue 4, Page 884-968, August 2024. <br/> Abstract. We consider the extension of [math] with quantifiers that state that the number of elements where a formula holds should belong to a given ultimately periodic set. We show that both satisfiability and finite satisfiability of the logic are decidable. We also show that the spectrum of any sentence, i.e., the set of the sizes of its finite models, is definable in Presburger arithmetic. In the process we present several refinements to the “biregular graph method.” In this method, decidability issues concerning two-variable logics are reduced to questions about Presburger definability of integer vectors associated with partitioned graphs, where nodes in a partition satisfy certain constraints on their in- and out-degrees.","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"31 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1137/22m1504792","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Computing, Volume 53, Issue 4, Page 884-968, August 2024.
Abstract. We consider the extension of [math] with quantifiers that state that the number of elements where a formula holds should belong to a given ultimately periodic set. We show that both satisfiability and finite satisfiability of the logic are decidable. We also show that the spectrum of any sentence, i.e., the set of the sizes of its finite models, is definable in Presburger arithmetic. In the process we present several refinements to the “biregular graph method.” In this method, decidability issues concerning two-variable logics are reduced to questions about Presburger definability of integer vectors associated with partitioned graphs, where nodes in a partition satisfy certain constraints on their in- and out-degrees.
带终极周期计数的两变量逻辑
SIAM 计算期刊》,第 53 卷第 4 期,第 884-968 页,2024 年 8 月。 摘要。我们考虑用量词对[math]进行扩展,量词表示公式成立的元素数应属于给定的最终周期集。我们证明该逻辑的可满足性和有限可满足性都是可判定的。我们还证明,任何句子的谱,即其有限模型的大小集合,都可以用普雷斯伯格算术来定义。在此过程中,我们提出了对 "双圆图方法 "的若干改进。在这种方法中,有关双变量逻辑的可判定性问题被简化为与分区图相关的整数向量的普雷斯伯格可定义性问题,其中分区中的节点满足其入度和出度的某些约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Computing
SIAM Journal on Computing 工程技术-计算机:理论方法
CiteScore
4.60
自引率
0.00%
发文量
68
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信