{"title":"Transcriptomic profiling of dynamic alternative splicing during the early response to Ralstonia solanacearum infection in tobacco roots","authors":"Xiuming Wu, Ruimei Geng, Zhengwen Liu, Lirui Cheng, Caihong Jiang, Dan Liu, Aiguo Yang, Ying Tong, Shuai Chen, Yangyang Sun, Zhiliang Xiao, Min Ren","doi":"10.1007/s10725-023-01112-y","DOIUrl":null,"url":null,"abstract":"<p>The pathogenic bacterium, <i>Ralstonia solanacearum</i>, causes bacterial wilt disease in many crops, which leads to significant yield losses worldwide. Although genes associated with resistance to this pathogen have been isolated and characterized in crops, the molecular mechanisms underlying the plant–pathogen interactions remain to be elucidated. Here, we performed a comparative transcriptional profiling analysis of tobacco (<i>Nicotiana tabacum</i>) cultivars C048 (susceptible) and C244 (resistant) in response to <i>R. solanacearum</i> infection. We found that the number of down- and up-regulated genes increased dramatically 3 h post inoculation (hpi), peaked 24 hpi, and then decreased 48 and 72 hpi, representing a “transcriptomic shock”. Of these genes, those associated with biotic and abiotic stresses and secondary metabolism were up-regulated, whereas those associated with primary metabolism were down-regulated. Alternative splicing (AS) modulates root defense against <i>R. solanacearum</i> by fine-tuning gene expression during the transcriptomic responses to pathogen invasion. The numbers of skipped exon (SE) and mutually exclusive exon (MXE) type AS events were reduced by approximately 60–80% in roots 9–72 hpi compared to those occurring 0–3 hpi. On the contrary, the number of differential alternative splicing (DAS) events showing a change in isoform ratio between samples increased, and most of them were associated with the down-regulation of corresponding gene expression. In addition, genes encoding transcription factors and leucine-rich repeat domain proteins that showed changes in both expression level and AS profile during pathogen infection were identified. Our study offers novel insights into the mechanisms underlying the transcriptional and post-transcriptional regulation of the tobacco response to <i>R. solanacearum</i> infection and will benefit the molecular breeding of pathogen-resistant tobacco in the future.</p>","PeriodicalId":20412,"journal":{"name":"Plant Growth Regulation","volume":"30 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Growth Regulation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10725-023-01112-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The pathogenic bacterium, Ralstonia solanacearum, causes bacterial wilt disease in many crops, which leads to significant yield losses worldwide. Although genes associated with resistance to this pathogen have been isolated and characterized in crops, the molecular mechanisms underlying the plant–pathogen interactions remain to be elucidated. Here, we performed a comparative transcriptional profiling analysis of tobacco (Nicotiana tabacum) cultivars C048 (susceptible) and C244 (resistant) in response to R. solanacearum infection. We found that the number of down- and up-regulated genes increased dramatically 3 h post inoculation (hpi), peaked 24 hpi, and then decreased 48 and 72 hpi, representing a “transcriptomic shock”. Of these genes, those associated with biotic and abiotic stresses and secondary metabolism were up-regulated, whereas those associated with primary metabolism were down-regulated. Alternative splicing (AS) modulates root defense against R. solanacearum by fine-tuning gene expression during the transcriptomic responses to pathogen invasion. The numbers of skipped exon (SE) and mutually exclusive exon (MXE) type AS events were reduced by approximately 60–80% in roots 9–72 hpi compared to those occurring 0–3 hpi. On the contrary, the number of differential alternative splicing (DAS) events showing a change in isoform ratio between samples increased, and most of them were associated with the down-regulation of corresponding gene expression. In addition, genes encoding transcription factors and leucine-rich repeat domain proteins that showed changes in both expression level and AS profile during pathogen infection were identified. Our study offers novel insights into the mechanisms underlying the transcriptional and post-transcriptional regulation of the tobacco response to R. solanacearum infection and will benefit the molecular breeding of pathogen-resistant tobacco in the future.
期刊介绍:
Plant Growth Regulation is an international journal publishing original articles on all aspects of plant growth and development. We welcome manuscripts reporting question-based research using hormonal, physiological, environmental, genetical, biophysical, developmental or molecular approaches to the study of plant growth regulation.
Emphasis is placed on papers presenting the results of original research. Occasional reviews on important topics will also be welcome. All contributions must be in English.