{"title":"Estimating Pillar Strength for Rock Salt Mines of the Salt Range Pakistan Using Statistical and Artificial Neural Network Modeling Techniques","authors":"Y. Majeed, K. M. Sani, M. Z. Emad","doi":"10.1007/s42461-024-01037-8","DOIUrl":null,"url":null,"abstract":"<p>This research proposes empirical models to estimate pillar strength by adopting multilinear regression and artificial neural network approaches for rock salt mines of the Salt Range, Punjab, Pakistan. The field data of a total of 168 pillars was collected from three (03) selected rock salt mines being operated by Pakistan Mineral Development Corporation. The field work included geometry of pillars, Schmidt rebound hardness (SRH), uniaxial compressive strength (UCS), fracture spacing, fracture condition, joint-orientation, groundwater state, weathering effects, blasting effects, and mining-induced stress. The dataset collected from the field for each rock salt pillar was further utilized to determine rock quality designation (RQD), rock mass rating (RMR), mining rock mass rating (MRMR), design rock mass strength (DRMS), and pillar strength (<span>\\({\\sigma }_{p}\\)</span>). The modeling was done using a dataset of 150 columns, and the remaining data of 18 pillars was left for validation purposes. The proposed ANN and MLR models have <i>R</i>-square (<i>R</i><sup>2</sup>) values of 95.35% and 91.61%, respectively. Further, the prediction performance of the ANN model was also compared with that of multilinear regression (MLR). It was found that the ANN model outperformed the MLR model.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01037-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This research proposes empirical models to estimate pillar strength by adopting multilinear regression and artificial neural network approaches for rock salt mines of the Salt Range, Punjab, Pakistan. The field data of a total of 168 pillars was collected from three (03) selected rock salt mines being operated by Pakistan Mineral Development Corporation. The field work included geometry of pillars, Schmidt rebound hardness (SRH), uniaxial compressive strength (UCS), fracture spacing, fracture condition, joint-orientation, groundwater state, weathering effects, blasting effects, and mining-induced stress. The dataset collected from the field for each rock salt pillar was further utilized to determine rock quality designation (RQD), rock mass rating (RMR), mining rock mass rating (MRMR), design rock mass strength (DRMS), and pillar strength (\({\sigma }_{p}\)). The modeling was done using a dataset of 150 columns, and the remaining data of 18 pillars was left for validation purposes. The proposed ANN and MLR models have R-square (R2) values of 95.35% and 91.61%, respectively. Further, the prediction performance of the ANN model was also compared with that of multilinear regression (MLR). It was found that the ANN model outperformed the MLR model.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.