Prosper Chimunhu, Roohollah Shirani Faradonbeh, Erkan Topal, Mohammad Waqar Ali Asad, Ajak Duany Ajak
{"title":"Development of Novel Hybrid Intelligent Predictive Models for Dilution Prediction in Underground Sub-level Mining","authors":"Prosper Chimunhu, Roohollah Shirani Faradonbeh, Erkan Topal, Mohammad Waqar Ali Asad, Ajak Duany Ajak","doi":"10.1007/s42461-024-01029-8","DOIUrl":null,"url":null,"abstract":"<p>Tenuous dilution estimates in underground mine production scheduling continue to cause significant variations between schedule forecasts and actual production. This arises partly from the inference of dilution from predecessor stopes’ performance, disregarding that these stopes would have undergone multiple intermediate design changes between scheduling and actual mining. The resultant drill and blast-influenced dilution factors gradually lose its robustness over longer planning horizons or when applied to greenfield or brownfield expansions that do not have prior performance data. To overcome this problem, a new methodology is proposed to predict dilution in underground sub-level open stoping (SLOS) using basic geological, geotechnical and stope design attributes available in the early stage of mine planning. The method utilises principal component analysis (PCA), classification and regression tree (CART) algorithm and stepwise selection and elimination (SSE) analysis. First, SSE analysis was conducted to identify the most important independent variables to be used with the CART algorithm (i.e., the SSE-CART model) to provide a predictive model. PCA analysis was then performed, and the new principal components were used to propose a new comparative model (i.e., the PCA-CART model). Low <i>R</i><sup>2</sup> values were observed for both models, necessitating the consolidation of dilution categories to increase the models’ prediction bandwidth. The hybrid PCA-CART model outperformed the SSE-CART model with overall F1 score prediction accuracy of 72% and target dilution category prediction accuracy of over 93% against SSE-CART’s 70% and 72%, respectively. Importantly, this study revealed a 13% minimum underestimation of dilution relative to the original design stopes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01029-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tenuous dilution estimates in underground mine production scheduling continue to cause significant variations between schedule forecasts and actual production. This arises partly from the inference of dilution from predecessor stopes’ performance, disregarding that these stopes would have undergone multiple intermediate design changes between scheduling and actual mining. The resultant drill and blast-influenced dilution factors gradually lose its robustness over longer planning horizons or when applied to greenfield or brownfield expansions that do not have prior performance data. To overcome this problem, a new methodology is proposed to predict dilution in underground sub-level open stoping (SLOS) using basic geological, geotechnical and stope design attributes available in the early stage of mine planning. The method utilises principal component analysis (PCA), classification and regression tree (CART) algorithm and stepwise selection and elimination (SSE) analysis. First, SSE analysis was conducted to identify the most important independent variables to be used with the CART algorithm (i.e., the SSE-CART model) to provide a predictive model. PCA analysis was then performed, and the new principal components were used to propose a new comparative model (i.e., the PCA-CART model). Low R2 values were observed for both models, necessitating the consolidation of dilution categories to increase the models’ prediction bandwidth. The hybrid PCA-CART model outperformed the SSE-CART model with overall F1 score prediction accuracy of 72% and target dilution category prediction accuracy of over 93% against SSE-CART’s 70% and 72%, respectively. Importantly, this study revealed a 13% minimum underestimation of dilution relative to the original design stopes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.