Nonexistence of Integrable Nonlinear Magnetic Fields with Invariants Quadratic in Momenta

Bela Erdelyi, Kevin Hamilton, Jacob Pratscher, Marie Swartz
{"title":"Nonexistence of Integrable Nonlinear Magnetic Fields with Invariants Quadratic in Momenta","authors":"Bela Erdelyi, Kevin Hamilton, Jacob Pratscher, Marie Swartz","doi":"arxiv-2407.04145","DOIUrl":null,"url":null,"abstract":"Nonlinear, completely integrable Hamiltonian systems that serve as blueprints\nfor novel particle accelerators at the intensity frontier are promising avenues\nfor research, as Fermilab's Integrable Optics Test Accelerator (IOTA) example\nclearly illustrates. Here, we show that only very limited generalizations are\npossible when no approximations in the underlying Hamiltonian or Maxwell\nequations are allowed, as was the case for IOTA. Specifically, no such systems\nexist with invariants quadratic in the momenta, precluding straightforward\ngeneralization of the Courant-Snyder theory of linear integrable systems in\nbeam physics. We also conjecture that no such systems exist with invariants of\nhigher degree in the momenta. This leaves solenoidal magnetic fields, including\ntheir nonlinear fringe fields, as the only completely integrable static\nmagnetic fields, albeit with invariants that are linear in the momenta. The\ndifficulties come from enforcing Maxwell equations; without constraints, we\nshow that there are many solutions. In particular, we discover a previously\nunknown large family of integrable Hamiltonians.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear, completely integrable Hamiltonian systems that serve as blueprints for novel particle accelerators at the intensity frontier are promising avenues for research, as Fermilab's Integrable Optics Test Accelerator (IOTA) example clearly illustrates. Here, we show that only very limited generalizations are possible when no approximations in the underlying Hamiltonian or Maxwell equations are allowed, as was the case for IOTA. Specifically, no such systems exist with invariants quadratic in the momenta, precluding straightforward generalization of the Courant-Snyder theory of linear integrable systems in beam physics. We also conjecture that no such systems exist with invariants of higher degree in the momenta. This leaves solenoidal magnetic fields, including their nonlinear fringe fields, as the only completely integrable static magnetic fields, albeit with invariants that are linear in the momenta. The difficulties come from enforcing Maxwell equations; without constraints, we show that there are many solutions. In particular, we discover a previously unknown large family of integrable Hamiltonians.
不存在矩二次无变量的可积分非线性磁场
费米实验室的可积分光学试验加速器(IOTA)清楚地表明,作为强度前沿新型粒子加速器蓝图的非线性、完全可积分的哈密顿系统是很有前途的研究途径。在这里,我们表明,如果不允许对底层哈密顿方程或马克斯韦勒方程进行近似,就像 IOTA 的情况一样,只有非常有限的概括是可能的。具体来说,没有这样的系统具有矩二次方的不变性,从而排除了光束物理学中线性可积分系统的库兰德-斯奈德理论的直接推广。我们还猜想,不存在在力矩上具有更高不变式的系统。这使得螺线管磁场,包括其非线性边缘场,成为唯一完全可积分的静态磁场,尽管其不变式在力矩上是线性的。困难来自于强制执行麦克斯韦方程;在没有约束的情况下,我们发现存在许多解。特别是,我们发现了一个以前未知的可积分哈密顿族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信