Erkan Aydar, H. Evren Çubukçu, Çağatay Bal, Nicolas Cluzel, Çağdas Hakan Aladağ, Orkun Ersoy, Didier Laporte
{"title":"Volcanic jets to commercial jets: synopsis and diagnosis","authors":"Erkan Aydar, H. Evren Çubukçu, Çağatay Bal, Nicolas Cluzel, Çağdas Hakan Aladağ, Orkun Ersoy, Didier Laporte","doi":"10.1007/s00445-024-01759-z","DOIUrl":null,"url":null,"abstract":"<p>Aircraft encounters with volcanic ash have caused significant damage over the past 40 years, resulting in particular attention being given to the issue. We analyzed the volcanic ash-aircraft encounter database published by the USGS. We added new volcanic eruptions and parameters such as eruption types, and dry–wet. Then, we applied standard and advanced statistical methods.</p><p>Over 130 encounters have been documented in the mentioned database, with volcanic ash causing severe abrasions to the windshield, airframe, wings, and engine components. In nine cases, aircraft engines failed. We applied the binary regression analysis and some laboratory melting experiments on volcanic ash. Besides phreatomagmatism, we use the term external water in this work to describe meteoric water that enters volcanic plumes through precipitation or melting ice on ice-capped volcanoes. We demonstrated that engine failure occurs when our regression analyses undergo dry-to-wet conditions. In other words, statistically, there is a positive correlation between wet ash encounters with aircraft and engine failure incidents. Moreover, experiments conducted at 900 °C and under 40 bar pressure showed increased sintering in the dry sample, while melting textures were more prevalent in hydrated samples. We concluded that despite the various eruptive dynamics of volcanic ash, the introduction of external water into the volcanic plumes, probably causing instantaneous hydration of volcanic ash, is a common factor in engine failure incidents. Thus, we have identified the reasons behind engine failures during encounters between aircraft and volcanic ash and the specific damage that can occur depending on the type of eruption involved.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"32 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00445-024-01759-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aircraft encounters with volcanic ash have caused significant damage over the past 40 years, resulting in particular attention being given to the issue. We analyzed the volcanic ash-aircraft encounter database published by the USGS. We added new volcanic eruptions and parameters such as eruption types, and dry–wet. Then, we applied standard and advanced statistical methods.
Over 130 encounters have been documented in the mentioned database, with volcanic ash causing severe abrasions to the windshield, airframe, wings, and engine components. In nine cases, aircraft engines failed. We applied the binary regression analysis and some laboratory melting experiments on volcanic ash. Besides phreatomagmatism, we use the term external water in this work to describe meteoric water that enters volcanic plumes through precipitation or melting ice on ice-capped volcanoes. We demonstrated that engine failure occurs when our regression analyses undergo dry-to-wet conditions. In other words, statistically, there is a positive correlation between wet ash encounters with aircraft and engine failure incidents. Moreover, experiments conducted at 900 °C and under 40 bar pressure showed increased sintering in the dry sample, while melting textures were more prevalent in hydrated samples. We concluded that despite the various eruptive dynamics of volcanic ash, the introduction of external water into the volcanic plumes, probably causing instantaneous hydration of volcanic ash, is a common factor in engine failure incidents. Thus, we have identified the reasons behind engine failures during encounters between aircraft and volcanic ash and the specific damage that can occur depending on the type of eruption involved.
期刊介绍:
Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.