In situ investigation of ruthenium doped lanthanum nickel titanium double perovskite and its exsolution behaviour†

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jia Guo, Andrey Berenov and Stephen J. Skinner
{"title":"In situ investigation of ruthenium doped lanthanum nickel titanium double perovskite and its exsolution behaviour†","authors":"Jia Guo, Andrey Berenov and Stephen J. Skinner","doi":"10.1039/D4NA00349G","DOIUrl":null,"url":null,"abstract":"<p >Exsolution, an innovative method for fabricating perovskite-based oxides decorated with metal nanoparticles, has garnered significant interest in the fields of catalyst fabrication and electrochemical devices. Although dopant exsolution from single perovskite structures has been extensively studied, the exsolution behaviour of double perovskite structures remains insufficiently understood. In this study, we synthesized B-site double perovskite Ru-doped lanthanum nickel titanates with a 7.5 at% A-site deficiency, and systematically investigated the exsolution process that formed nickel metal nanoparticles on the material surface, across a broad reduction temperature range of 350–1000 °C. Both <em>Ex situ</em> and <em>in situ</em> characterization revealed that small, uniform Ni nanoparticles exsolved at low temperatures, whereas the exsolution of ruthenium required higher reduction temperatures beyond 1000 °C. Within the reduction temperature range of 350–500 °C, a notable finding is the reconstruction of exsolved nanoparticles, implying that Ni particles exist in a thermodynamically metastable state. Electrochemical impedance spectroscopy (EIS) showed a decreased area specific resistance (ASR) during the progress of exsolution. The increase in current density of a full solid oxide cell (SOC) in electrolysis mode and the doubling of peak power density in fuel cell mode attributed to the exsolution of Ni nanoparticles highlight the potential application of metal exsolution in electrode materials for SOCs.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/na/d4na00349g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/na/d4na00349g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Exsolution, an innovative method for fabricating perovskite-based oxides decorated with metal nanoparticles, has garnered significant interest in the fields of catalyst fabrication and electrochemical devices. Although dopant exsolution from single perovskite structures has been extensively studied, the exsolution behaviour of double perovskite structures remains insufficiently understood. In this study, we synthesized B-site double perovskite Ru-doped lanthanum nickel titanates with a 7.5 at% A-site deficiency, and systematically investigated the exsolution process that formed nickel metal nanoparticles on the material surface, across a broad reduction temperature range of 350–1000 °C. Both Ex situ and in situ characterization revealed that small, uniform Ni nanoparticles exsolved at low temperatures, whereas the exsolution of ruthenium required higher reduction temperatures beyond 1000 °C. Within the reduction temperature range of 350–500 °C, a notable finding is the reconstruction of exsolved nanoparticles, implying that Ni particles exist in a thermodynamically metastable state. Electrochemical impedance spectroscopy (EIS) showed a decreased area specific resistance (ASR) during the progress of exsolution. The increase in current density of a full solid oxide cell (SOC) in electrolysis mode and the doubling of peak power density in fuel cell mode attributed to the exsolution of Ni nanoparticles highlight the potential application of metal exsolution in electrode materials for SOCs.

Abstract Image

原位研究掺钌镧镍钛双包晶及其溶出行为
外溶解是一种创新的方法,用于制造饰有金属纳米颗粒的透辉石基氧化物,在催化剂制造和电化学设备领域引起了极大的兴趣。尽管对单包晶结构中的掺杂剂外溶解进行了广泛的研究,但对双包晶结构的外溶解行为仍缺乏足够的了解。在本研究中,我们合成了 A 位缺失率为 7.5% 的 B 位双掺杂 Ru 的镧系镍钛酸盐,并在 350-1000°C 的宽还原温度范围内系统地研究了在材料表面形成镍金属纳米颗粒的外溶过程。原位和原位表征均表明,小而均匀的镍纳米颗粒在低温下即可溶出,而钌的溶出则需要超过 1000°C 的较高还原温度。在 350-500°C 的还原温度范围内,一个值得注意的发现是外溶纳米粒子的重构,这意味着镍粒子存在于热力学上的逸散状态。电化学阻抗光谱(EIS)显示,在溶解过程中,面积比电阻(ASR)下降。在电解模式下,全固态氧化物电池(SOC)的电流密度增加了,而在燃料电池模式下,镍纳米颗粒的外溶作用使峰值功率密度增加了一倍,这凸显了金属外溶在 SOC 电极材料中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信