{"title":"Online meta-learning approach for sensor fault diagnosis using limited data","authors":"Lei Wang, Dukang Huang, Ke Huang, Marco Civera","doi":"10.1088/1361-665x/ad5caf","DOIUrl":null,"url":null,"abstract":"The accurate and timely diagnosis of sensor faults plays a critical role in ensuring the reliability and performance of structural health monitoring (SHM) systems. However, the challenge is detecting, locating, and estimating sensor faults in an online manner using limited training data. To resolve this problem, a novel approach for online sensor fault diagnosis is proposed for SHM. The proposed approach is based on meta-learning, which enables superior model generalization capabilities using limited data. The detection, localization, and estimation of typical sensor faults in an online manner can be achieved efficiently by the proposed approach. First, a one-dimensional convolutional neural network (1D CNN) is designed to detect and locate faulty sensors. The initial model parameters of the 1D CNN are optimized using a model-agnostic meta-learning training strategy. This strategy allows the acquisition of transferable prior knowledge, which can speed up the learning process on new sensor fault detection and localization tasks. The meta-learning strategy also enables efficient and accurate detection and localization of potential faulty sensors with limited data. After detecting and locating the faulty sensors, an online updating algorithm based on a dual Kalman filter is used to estimate the severity of sensor faults and structural states simultaneously. The proposed approach is demonstrated with simulated sensor faults that cover a numerical example and field measurements from the Canton Tower. The results show that the proposed approach is applicable for online sensor fault diagnosis in SHM.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"40 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad5caf","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate and timely diagnosis of sensor faults plays a critical role in ensuring the reliability and performance of structural health monitoring (SHM) systems. However, the challenge is detecting, locating, and estimating sensor faults in an online manner using limited training data. To resolve this problem, a novel approach for online sensor fault diagnosis is proposed for SHM. The proposed approach is based on meta-learning, which enables superior model generalization capabilities using limited data. The detection, localization, and estimation of typical sensor faults in an online manner can be achieved efficiently by the proposed approach. First, a one-dimensional convolutional neural network (1D CNN) is designed to detect and locate faulty sensors. The initial model parameters of the 1D CNN are optimized using a model-agnostic meta-learning training strategy. This strategy allows the acquisition of transferable prior knowledge, which can speed up the learning process on new sensor fault detection and localization tasks. The meta-learning strategy also enables efficient and accurate detection and localization of potential faulty sensors with limited data. After detecting and locating the faulty sensors, an online updating algorithm based on a dual Kalman filter is used to estimate the severity of sensor faults and structural states simultaneously. The proposed approach is demonstrated with simulated sensor faults that cover a numerical example and field measurements from the Canton Tower. The results show that the proposed approach is applicable for online sensor fault diagnosis in SHM.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.