Comparison of mathematical and supervised machine-learning models for ductile-to-brittle transition in bcc alloys

IF 2.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Parag M Ahmedabadi
{"title":"Comparison of mathematical and supervised machine-learning models for ductile-to-brittle transition in bcc alloys","authors":"Parag M Ahmedabadi","doi":"10.1088/2053-1591/ad5cd8","DOIUrl":null,"url":null,"abstract":"This study focuses on modelling Ductile-to-Brittle Transition (DBT) curves using various mathematical and supervised machine learning models. Charpy impact energy values are converted to normalized energy values to account for reductions in upper-shelf energy. The research introduces a saturation parameter in mathematical models to capture these variations and examines the influence of alloying elements, microstructure, and neutron irradiation on DBT behaviour in nuclear structural materials. Detailed analyses reveal how fitting parameters vary with these factors and demonstrate that mathematical models’ fitting parameters generally align with observed DBT curve trends. The predictive capabilities of these mathematical models are also compared with those of supervised machine learning models, highlighting the strengths and limitations of each approach in modelling DBT behaviour. An explainable approach is used for interpretation of machine learning models and it is shown that this approach can be effectively used for the influence of various independent parameters on impact energy.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"40 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad5cd8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on modelling Ductile-to-Brittle Transition (DBT) curves using various mathematical and supervised machine learning models. Charpy impact energy values are converted to normalized energy values to account for reductions in upper-shelf energy. The research introduces a saturation parameter in mathematical models to capture these variations and examines the influence of alloying elements, microstructure, and neutron irradiation on DBT behaviour in nuclear structural materials. Detailed analyses reveal how fitting parameters vary with these factors and demonstrate that mathematical models’ fitting parameters generally align with observed DBT curve trends. The predictive capabilities of these mathematical models are also compared with those of supervised machine learning models, highlighting the strengths and limitations of each approach in modelling DBT behaviour. An explainable approach is used for interpretation of machine learning models and it is shown that this approach can be effectively used for the influence of various independent parameters on impact energy.
bcc 合金中从韧性到脆性转变的数学模型与监督机器学习模型的比较
本研究的重点是利用各种数学模型和监督机器学习模型对韧性到脆性转变(DBT)曲线进行建模。夏比冲击能量值被转换为归一化能量值,以考虑上层能量的减少。研究在数学模型中引入了饱和参数,以捕捉这些变化,并研究合金元素、微观结构和中子辐照对核结构材料 DBT 行为的影响。详细分析揭示了拟合参数如何随这些因素而变化,并证明数学模型的拟合参数通常与观测到的 DBT 曲线趋势一致。还将这些数学模型的预测能力与监督机器学习模型的预测能力进行了比较,突出了每种方法在模拟 DBT 行为方面的优势和局限性。在解释机器学习模型时使用了一种可解释的方法,结果表明,这种方法可有效用于分析各种独立参数对冲击能量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Express
Materials Research Express MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.50
自引率
4.30%
发文量
640
审稿时长
12 weeks
期刊介绍: A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信