{"title":"Nature Abhors a Vacuum: A Simple Rigorous Example of Thermalization in an Isolated Macroscopic Quantum System","authors":"Naoto Shiraishi, Hal Tasaki","doi":"10.1007/s10955-024-03289-6","DOIUrl":null,"url":null,"abstract":"<div><p>We show, without relying on any unproven assumptions, that a low-density free fermion chain exhibits thermalization in the following (restricted) sense. We choose the initial state as a pure state drawn randomly from the Hilbert space in which all particles are in half of the chain. This represents a nonequilibrium state such that the half chain containing all particles is in equilibrium at infinite temperature, and the other half chain is a vacuum. We let the system evolve according to the unitary time evolution determined by the Hamiltonian and, at a sufficiently large typical time, measure the particle number in an arbitrary macroscopic region in the chain. In this setup, it is proved that the measured number is close to the equilibrium value with probability very close to one. Our result establishes the presence of thermalization in a concrete model in a mathematically rigorous manner. The key for the proof is a new strategy to show that a randomly generated nonequilibrium initial state typically has a large enough effective dimension by using only mild verifiable assumptions. In the present work, we first give general proof of thermalization based on two assumptions, namely, the absence of degeneracy in energy eigenvalues and a property about the particle distribution in energy eigenstates. We then justify these assumptions in a concrete free-fermion model, where the absence of degeneracy is established by using number-theoretic results. This means that our general result also applies to any lattice gas models in which the above two assumptions are justified. To confirm the potential wide applicability of our theory, we discuss some other models for which the essential assumption about the particle distribution is easily verified, and some non-random initial states whose effective dimensions are sufficiently large.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 7","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03289-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We show, without relying on any unproven assumptions, that a low-density free fermion chain exhibits thermalization in the following (restricted) sense. We choose the initial state as a pure state drawn randomly from the Hilbert space in which all particles are in half of the chain. This represents a nonequilibrium state such that the half chain containing all particles is in equilibrium at infinite temperature, and the other half chain is a vacuum. We let the system evolve according to the unitary time evolution determined by the Hamiltonian and, at a sufficiently large typical time, measure the particle number in an arbitrary macroscopic region in the chain. In this setup, it is proved that the measured number is close to the equilibrium value with probability very close to one. Our result establishes the presence of thermalization in a concrete model in a mathematically rigorous manner. The key for the proof is a new strategy to show that a randomly generated nonequilibrium initial state typically has a large enough effective dimension by using only mild verifiable assumptions. In the present work, we first give general proof of thermalization based on two assumptions, namely, the absence of degeneracy in energy eigenvalues and a property about the particle distribution in energy eigenstates. We then justify these assumptions in a concrete free-fermion model, where the absence of degeneracy is established by using number-theoretic results. This means that our general result also applies to any lattice gas models in which the above two assumptions are justified. To confirm the potential wide applicability of our theory, we discuss some other models for which the essential assumption about the particle distribution is easily verified, and some non-random initial states whose effective dimensions are sufficiently large.
期刊介绍:
The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.