Stereo-RIVO: Stereo-Robust Indirect Visual Odometry

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Erfan Salehi, Ali Aghagolzadeh, Reshad Hosseini
{"title":"Stereo-RIVO: Stereo-Robust Indirect Visual Odometry","authors":"Erfan Salehi, Ali Aghagolzadeh, Reshad Hosseini","doi":"10.1007/s10846-024-02116-0","DOIUrl":null,"url":null,"abstract":"<p>Mobile robots and autonomous systems rely on advanced guidance modules which often incorporate cameras to enable key functionalities. These modules are equipped with visual odometry (VO) and visual simultaneous localization and mapping (VSLAM) algorithms that work by analyzing changes between successive frames captured by cameras. VO/VSLAM-based systems are critical backbones for autonomous vehicles, virtual reality, structure from motion, and other robotic operations. VO/VSLAM systems encounter difficulties when implementing real-time applications in outdoor environments with restricted hardware and software platforms. While many VO systems target achieving high accuracy and speed, they often exhibit high degree of complexity and limited robustness. To overcome these challenges, this paper aims to propose a new VO system called Stereo-RIVO that balances accuracy, speed, and computational cost. Furthermore, this algorithm is based on a new data association module which consists of two primary components: a scene-matching process that achieves exceptional precision without feature extraction and a key-frame detection technique based on a model of scene movement. The performance of this proposed VO system has been tested extensively for all sequences of KITTI and UTIAS datasets for analyzing efficiency for outdoor dynamic and indoor static environments, respectively. The results of these tests indicate that the proposed Stereo-RIVO outperforms other state-of-the-art methods in terms of robustness, accuracy, and speed. Our implementation code of stereo-RIVO is available at: https://github.com/salehierfan/Stereo-RIVO.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"11 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02116-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile robots and autonomous systems rely on advanced guidance modules which often incorporate cameras to enable key functionalities. These modules are equipped with visual odometry (VO) and visual simultaneous localization and mapping (VSLAM) algorithms that work by analyzing changes between successive frames captured by cameras. VO/VSLAM-based systems are critical backbones for autonomous vehicles, virtual reality, structure from motion, and other robotic operations. VO/VSLAM systems encounter difficulties when implementing real-time applications in outdoor environments with restricted hardware and software platforms. While many VO systems target achieving high accuracy and speed, they often exhibit high degree of complexity and limited robustness. To overcome these challenges, this paper aims to propose a new VO system called Stereo-RIVO that balances accuracy, speed, and computational cost. Furthermore, this algorithm is based on a new data association module which consists of two primary components: a scene-matching process that achieves exceptional precision without feature extraction and a key-frame detection technique based on a model of scene movement. The performance of this proposed VO system has been tested extensively for all sequences of KITTI and UTIAS datasets for analyzing efficiency for outdoor dynamic and indoor static environments, respectively. The results of these tests indicate that the proposed Stereo-RIVO outperforms other state-of-the-art methods in terms of robustness, accuracy, and speed. Our implementation code of stereo-RIVO is available at: https://github.com/salehierfan/Stereo-RIVO.

Stereo-RIVO: 立体稳固间接目视测距仪
移动机器人和自主系统依赖于先进的制导模块,这些模块通常包含摄像头以实现关键功能。这些模块配备了视觉里程测量(VO)和视觉同步定位与映射(VSLAM)算法,通过分析摄像头捕捉的连续帧之间的变化来工作。基于 VO/VSLAM 的系统是自动驾驶汽车、虚拟现实、运动结构和其他机器人操作的重要基础。在硬件和软件平台受限的室外环境中实施实时应用时,VO/VSLAM 系统会遇到困难。虽然许多虚拟机系统以实现高精度和高速度为目标,但它们往往表现出高度的复杂性和有限的鲁棒性。为了克服这些挑战,本文旨在提出一种名为 Stereo-RIVO 的新型虚拟化系统,它能在精度、速度和计算成本之间取得平衡。此外,该算法基于一个新的数据关联模块,该模块由两个主要部分组成:一个是无需特征提取即可实现超高精度的场景匹配过程,另一个是基于场景运动模型的关键帧检测技术。我们对 KITTI 和 UTIAS 数据集的所有序列进行了广泛的测试,以分析所提出的 VO 系统在室外动态环境和室内静态环境下的性能。测试结果表明,所提出的立体-RIVO 在鲁棒性、准确性和速度方面都优于其他最先进的方法。我们的立体-RIVO实现代码可在以下网址获取:https://github.com/salehierfan/Stereo-RIVO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent & Robotic Systems
Journal of Intelligent & Robotic Systems 工程技术-机器人学
CiteScore
7.00
自引率
9.10%
发文量
219
审稿时长
6 months
期刊介绍: The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization. On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc. On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信