Depth-Enhanced Deep Learning Approach For Monocular Camera Based 3D Object Detection

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chuyao Wang, Nabil Aouf
{"title":"Depth-Enhanced Deep Learning Approach For Monocular Camera Based 3D Object Detection","authors":"Chuyao Wang, Nabil Aouf","doi":"10.1007/s10846-024-02128-w","DOIUrl":null,"url":null,"abstract":"<p>Automatic 3D object detection using monocular cameras presents significant challenges in the context of autonomous driving. Precise labeling of 3D object scales requires accurate spatial information, which is difficult to obtain from a single image due to the inherent lack of depth information in monocular images, compared to LiDAR data. In this paper, we propose a novel approach to address this issue by enhancing deep neural networks with depth information for monocular 3D object detection. The proposed method comprises three key components: 1)Feature Enhancement Pyramid Module: We extend the conventional Feature Pyramid Networks (FPN) by introducing a feature enhancement pyramid network. This module fuses feature maps from the original pyramid and captures contextual correlations across multiple scales. To increase the connectivity between low-level and high-level features, additional pathways are incorporated. 2)Auxiliary Dense Depth Estimator: We introduce an auxiliary dense depth estimator that generates dense depth maps to enhance the spatial perception capabilities of the deep network model without adding computational burden. 3)Augmented Center Depth Regression: To aid center depth estimation, we employ additional bounding box vertex depth regression based on geometry. Our experimental results demonstrate the superiority of the proposed technique over existing competitive methods reported in the literature. The approach showcases remarkable performance improvements in monocular 3D object detection, making it a promising solution for autonomous driving applications.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"13 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02128-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic 3D object detection using monocular cameras presents significant challenges in the context of autonomous driving. Precise labeling of 3D object scales requires accurate spatial information, which is difficult to obtain from a single image due to the inherent lack of depth information in monocular images, compared to LiDAR data. In this paper, we propose a novel approach to address this issue by enhancing deep neural networks with depth information for monocular 3D object detection. The proposed method comprises three key components: 1)Feature Enhancement Pyramid Module: We extend the conventional Feature Pyramid Networks (FPN) by introducing a feature enhancement pyramid network. This module fuses feature maps from the original pyramid and captures contextual correlations across multiple scales. To increase the connectivity between low-level and high-level features, additional pathways are incorporated. 2)Auxiliary Dense Depth Estimator: We introduce an auxiliary dense depth estimator that generates dense depth maps to enhance the spatial perception capabilities of the deep network model without adding computational burden. 3)Augmented Center Depth Regression: To aid center depth estimation, we employ additional bounding box vertex depth regression based on geometry. Our experimental results demonstrate the superiority of the proposed technique over existing competitive methods reported in the literature. The approach showcases remarkable performance improvements in monocular 3D object detection, making it a promising solution for autonomous driving applications.

基于深度增强深度学习的单目摄像头三维物体检测方法
使用单目摄像头自动检测三维物体给自动驾驶带来了巨大挑战。精确标注三维物体的尺度需要准确的空间信息,而与激光雷达数据相比,单目图像本身缺乏深度信息,因此很难从单幅图像中获取空间信息。在本文中,我们提出了一种解决这一问题的新方法,即利用深度信息增强深度神经网络,用于单目三维物体检测。所提出的方法由三个关键部分组成:1)特征增强金字塔模块:我们通过引入特征增强金字塔网络来扩展传统的特征金字塔网络(FPN)。该模块融合了原始金字塔中的特征图,并捕捉跨尺度的上下文相关性。为了增加低层次特征与高层次特征之间的联系,还加入了额外的路径。2)辅助密集深度估计器:我们引入了一个辅助密集深度估计器,它能生成密集深度图,在不增加计算负担的情况下增强深度网络模型的空间感知能力。3)增强中心深度回归:为了帮助中心深度估计,我们采用了基于几何形状的附加边界框顶点深度回归。我们的实验结果表明,所提出的技术优于文献中报道的现有竞争方法。该方法在单目三维物体检测中表现出了显著的性能提升,使其成为自动驾驶应用中一个前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent & Robotic Systems
Journal of Intelligent & Robotic Systems 工程技术-机器人学
CiteScore
7.00
自引率
9.10%
发文量
219
审稿时长
6 months
期刊介绍: The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization. On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc. On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信