{"title":"Depth-Enhanced Deep Learning Approach For Monocular Camera Based 3D Object Detection","authors":"Chuyao Wang, Nabil Aouf","doi":"10.1007/s10846-024-02128-w","DOIUrl":null,"url":null,"abstract":"<p>Automatic 3D object detection using monocular cameras presents significant challenges in the context of autonomous driving. Precise labeling of 3D object scales requires accurate spatial information, which is difficult to obtain from a single image due to the inherent lack of depth information in monocular images, compared to LiDAR data. In this paper, we propose a novel approach to address this issue by enhancing deep neural networks with depth information for monocular 3D object detection. The proposed method comprises three key components: 1)Feature Enhancement Pyramid Module: We extend the conventional Feature Pyramid Networks (FPN) by introducing a feature enhancement pyramid network. This module fuses feature maps from the original pyramid and captures contextual correlations across multiple scales. To increase the connectivity between low-level and high-level features, additional pathways are incorporated. 2)Auxiliary Dense Depth Estimator: We introduce an auxiliary dense depth estimator that generates dense depth maps to enhance the spatial perception capabilities of the deep network model without adding computational burden. 3)Augmented Center Depth Regression: To aid center depth estimation, we employ additional bounding box vertex depth regression based on geometry. Our experimental results demonstrate the superiority of the proposed technique over existing competitive methods reported in the literature. The approach showcases remarkable performance improvements in monocular 3D object detection, making it a promising solution for autonomous driving applications.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"13 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02128-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic 3D object detection using monocular cameras presents significant challenges in the context of autonomous driving. Precise labeling of 3D object scales requires accurate spatial information, which is difficult to obtain from a single image due to the inherent lack of depth information in monocular images, compared to LiDAR data. In this paper, we propose a novel approach to address this issue by enhancing deep neural networks with depth information for monocular 3D object detection. The proposed method comprises three key components: 1)Feature Enhancement Pyramid Module: We extend the conventional Feature Pyramid Networks (FPN) by introducing a feature enhancement pyramid network. This module fuses feature maps from the original pyramid and captures contextual correlations across multiple scales. To increase the connectivity between low-level and high-level features, additional pathways are incorporated. 2)Auxiliary Dense Depth Estimator: We introduce an auxiliary dense depth estimator that generates dense depth maps to enhance the spatial perception capabilities of the deep network model without adding computational burden. 3)Augmented Center Depth Regression: To aid center depth estimation, we employ additional bounding box vertex depth regression based on geometry. Our experimental results demonstrate the superiority of the proposed technique over existing competitive methods reported in the literature. The approach showcases remarkable performance improvements in monocular 3D object detection, making it a promising solution for autonomous driving applications.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).