Integration of Deep Q-Learning with a Grasp Quality Network for Robot Grasping in Cluttered Environments

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chih-Yung Huang, Yu-Hsiang Shao
{"title":"Integration of Deep Q-Learning with a Grasp Quality Network for Robot Grasping in Cluttered Environments","authors":"Chih-Yung Huang, Yu-Hsiang Shao","doi":"10.1007/s10846-024-02127-x","DOIUrl":null,"url":null,"abstract":"<p>During the movement of a robotic arm, collisions can easily occur if the arm directly grasps at multiple tightly stacked objects, thereby leading to grasp failures or machine damage. Grasp success can be improved through the rearrangement or movement of objects to clear space for grasping. This paper presents a high-performance deep Q-learning framework that can help robotic arms to learn synchronized push and grasp tasks. In this framework, a grasp quality network is used for precisely identifying stable grasp positions on objects to expedite model convergence and solve the problem of sparse rewards caused during training because of grasp failures. Furthermore, a novel reward function is proposed for effectively evaluating whether a pushing action is effective. The proposed framework achieved grasp success rates of 92% and 89% in simulations and real-world experiments, respectively. Furthermore, only 200 training steps were required to achieve a grasp success rate of 80%, which indicates the suitability of the proposed framework for rapid deployment in industrial settings.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"29 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02127-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

During the movement of a robotic arm, collisions can easily occur if the arm directly grasps at multiple tightly stacked objects, thereby leading to grasp failures or machine damage. Grasp success can be improved through the rearrangement or movement of objects to clear space for grasping. This paper presents a high-performance deep Q-learning framework that can help robotic arms to learn synchronized push and grasp tasks. In this framework, a grasp quality network is used for precisely identifying stable grasp positions on objects to expedite model convergence and solve the problem of sparse rewards caused during training because of grasp failures. Furthermore, a novel reward function is proposed for effectively evaluating whether a pushing action is effective. The proposed framework achieved grasp success rates of 92% and 89% in simulations and real-world experiments, respectively. Furthermore, only 200 training steps were required to achieve a grasp success rate of 80%, which indicates the suitability of the proposed framework for rapid deployment in industrial settings.

将深度 Q-Learning 与抓取质量网络相结合,实现机器人在杂乱环境中的抓取操作
在机械臂的运动过程中,如果机械臂直接抓取多个紧密堆叠的物体,很容易发生碰撞,从而导致抓取失败或机器损坏。通过重新排列或移动物体,为抓取腾出空间,可以提高抓取成功率。本文提出了一种高性能深度 Q-learning 框架,可帮助机械臂学习同步推动和抓取任务。在该框架中,抓取质量网络用于精确识别物体上的稳定抓取位置,以加快模型收敛,并解决训练过程中因抓取失败而导致的奖励稀疏问题。此外,还提出了一种新颖的奖励函数,用于有效评估推动动作是否有效。所提出的框架在模拟和实际实验中的抓取成功率分别达到了 92% 和 89%。此外,只需要 200 个训练步骤就能达到 80% 的抓取成功率,这表明所提出的框架适合在工业环境中快速部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent & Robotic Systems
Journal of Intelligent & Robotic Systems 工程技术-机器人学
CiteScore
7.00
自引率
9.10%
发文量
219
审稿时长
6 months
期刊介绍: The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization. On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc. On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信