{"title":"Implications of Ramsey Choice principles in \n \n ZF\n $\\mathsf {ZF}$","authors":"Lorenz Halbeisen, Riccardo Plati, Saharon Shelah","doi":"10.1002/malq.202300024","DOIUrl":null,"url":null,"abstract":"<p>The Ramsey Choice principle for families of <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-element sets, denoted <span></span><math>\n <semantics>\n <msub>\n <mo>RC</mo>\n <mi>n</mi>\n </msub>\n <annotation>$\\operatorname{RC}_{n}$</annotation>\n </semantics></math>, states that every infinite set <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> has an infinite subset <span></span><math>\n <semantics>\n <mrow>\n <mi>Y</mi>\n <mo>⊆</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$Y\\subseteq X$</annotation>\n </semantics></math> with a choice function on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>Y</mi>\n <mo>]</mo>\n </mrow>\n <mi>n</mi>\n </msup>\n <mo>:</mo>\n <mo>=</mo>\n <mrow>\n <mo>{</mo>\n <mi>z</mi>\n <mo>⊆</mo>\n <mi>Y</mi>\n <mo>:</mo>\n <mo>|</mo>\n <mi>z</mi>\n <mo>|</mo>\n <mo>=</mo>\n <mi>n</mi>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$[Y]^n:= \\lbrace z\\subseteq Y: |z| = n\\rbrace$</annotation>\n </semantics></math>. We investigate for which positive integers <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> the implication <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>RC</mo>\n <mi>m</mi>\n </msub>\n <mo>⇒</mo>\n <msub>\n <mo>RC</mo>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$\\operatorname{RC}_{m} \\implies \\operatorname{RC}_{n}$</annotation>\n </semantics></math> is provable in <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math>. It will turn out that beside the trivial implications <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>RC</mo>\n <mi>m</mi>\n </msub>\n <mo>⇒</mo>\n <msub>\n <mo>RC</mo>\n <mi>m</mi>\n </msub>\n </mrow>\n <annotation>$\\operatorname{RC}_{m} \\implies \\operatorname{RC}_{m}$</annotation>\n </semantics></math>, under the assumption that every odd integer <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>></mo>\n <mn>5</mn>\n </mrow>\n <annotation>$n&gt;5$</annotation>\n </semantics></math> is the sum of three primes (known as ternary Goldbach conjecture), the only non-trivial implication which is provable in <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>RC</mo>\n <mn>2</mn>\n </msub>\n <mo>⇒</mo>\n <msub>\n <mo>RC</mo>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation>$\\operatorname{RC}_{2} \\implies \\operatorname{RC}_{4}$</annotation>\n </semantics></math>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 2","pages":"255-261"},"PeriodicalIF":0.4000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300024","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
Abstract
The Ramsey Choice principle for families of -element sets, denoted , states that every infinite set has an infinite subset with a choice function on . We investigate for which positive integers and the implication is provable in . It will turn out that beside the trivial implications , under the assumption that every odd integer is the sum of three primes (known as ternary Goldbach conjecture), the only non-trivial implication which is provable in is .
期刊介绍:
Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.