Implications of Ramsey Choice principles in ZF $\mathsf {ZF}$

IF 0.4 4区 数学 Q4 LOGIC
Lorenz Halbeisen, Riccardo Plati, Saharon Shelah
{"title":"Implications of Ramsey Choice principles in \n \n ZF\n $\\mathsf {ZF}$","authors":"Lorenz Halbeisen,&nbsp;Riccardo Plati,&nbsp;Saharon Shelah","doi":"10.1002/malq.202300024","DOIUrl":null,"url":null,"abstract":"<p>The Ramsey Choice principle for families of <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-element sets, denoted <span></span><math>\n <semantics>\n <msub>\n <mo>RC</mo>\n <mi>n</mi>\n </msub>\n <annotation>$\\operatorname{RC}_{n}$</annotation>\n </semantics></math>, states that every infinite set <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> has an infinite subset <span></span><math>\n <semantics>\n <mrow>\n <mi>Y</mi>\n <mo>⊆</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$Y\\subseteq X$</annotation>\n </semantics></math> with a choice function on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>Y</mi>\n <mo>]</mo>\n </mrow>\n <mi>n</mi>\n </msup>\n <mo>:</mo>\n <mo>=</mo>\n <mrow>\n <mo>{</mo>\n <mi>z</mi>\n <mo>⊆</mo>\n <mi>Y</mi>\n <mo>:</mo>\n <mo>|</mo>\n <mi>z</mi>\n <mo>|</mo>\n <mo>=</mo>\n <mi>n</mi>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$[Y]^n:= \\lbrace z\\subseteq Y: |z| = n\\rbrace$</annotation>\n </semantics></math>. We investigate for which positive integers <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> the implication <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>RC</mo>\n <mi>m</mi>\n </msub>\n <mo>⇒</mo>\n <msub>\n <mo>RC</mo>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$\\operatorname{RC}_{m} \\implies \\operatorname{RC}_{n}$</annotation>\n </semantics></math> is provable in <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math>. It will turn out that beside the trivial implications <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>RC</mo>\n <mi>m</mi>\n </msub>\n <mo>⇒</mo>\n <msub>\n <mo>RC</mo>\n <mi>m</mi>\n </msub>\n </mrow>\n <annotation>$\\operatorname{RC}_{m} \\implies \\operatorname{RC}_{m}$</annotation>\n </semantics></math>, under the assumption that every odd integer <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>&gt;</mo>\n <mn>5</mn>\n </mrow>\n <annotation>$n&amp;gt;5$</annotation>\n </semantics></math> is the sum of three primes (known as ternary Goldbach conjecture), the only non-trivial implication which is provable in <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathsf {ZF}$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>RC</mo>\n <mn>2</mn>\n </msub>\n <mo>⇒</mo>\n <msub>\n <mo>RC</mo>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation>$\\operatorname{RC}_{2} \\implies \\operatorname{RC}_{4}$</annotation>\n </semantics></math>.</p>","PeriodicalId":49864,"journal":{"name":"Mathematical Logic Quarterly","volume":"70 2","pages":"255-261"},"PeriodicalIF":0.4000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/malq.202300024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Logic Quarterly","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202300024","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

The Ramsey Choice principle for families of n $n$ -element sets, denoted RC n $\operatorname{RC}_{n}$ , states that every infinite set X $X$ has an infinite subset Y X $Y\subseteq X$ with a choice function on [ Y ] n : = { z Y : | z | = n } $[Y]^n:= \lbrace z\subseteq Y: |z| = n\rbrace$ . We investigate for which positive integers m $m$ and n $n$ the implication RC m RC n $\operatorname{RC}_{m} \implies \operatorname{RC}_{n}$ is provable in  ZF $\mathsf {ZF}$ . It will turn out that beside the trivial implications RC m RC m $\operatorname{RC}_{m} \implies \operatorname{RC}_{m}$ , under the assumption that every odd integer n > 5 $n&gt;5$ is the sum of three primes (known as ternary Goldbach conjecture), the only non-trivial implication which is provable in ZF $\mathsf {ZF}$ is RC 2 RC 4 $\operatorname{RC}_{2} \implies \operatorname{RC}_{4}$ .

拉姆齐选择原则对 ZF$\mathsf {ZF}$ 的影响
元素集合族的拉姆齐选择原理(表示为 )指出,每个无限集合都有一个无限子集,其上有一个选择函数.我们将研究哪些正整数的蕴涵可以在 .中证明,除了三元蕴涵之外,在每个奇整数都是三个素数之和(称为三元哥德巴赫猜想)的假设下,唯一可以在 .中证明的非三元蕴涵是 .。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: Mathematical Logic Quarterly publishes original contributions on mathematical logic and foundations of mathematics and related areas, such as general logic, model theory, recursion theory, set theory, proof theory and constructive mathematics, algebraic logic, nonstandard models, and logical aspects of theoretical computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信