Surface and physicochemical characteristics of KSF-clay in a liquid esterification process: The boundaries between heterogeneous catalyst and precatalysts support

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
P. Rangel-Rivera, B. Bachiller-Baeza, A. Quiroga-Almaguer, I. Galindo-Esquivel, G. Rangel-Porras
{"title":"Surface and physicochemical characteristics of KSF-clay in a liquid esterification process: The boundaries between heterogeneous catalyst and precatalysts support","authors":"P. Rangel-Rivera, B. Bachiller-Baeza, A. Quiroga-Almaguer, I. Galindo-Esquivel, G. Rangel-Porras","doi":"10.1557/s43579-024-00606-8","DOIUrl":null,"url":null,"abstract":"<p>The KSF-clay is a material that presents a high density of acidic active sites, ideal for being a heterogeneous acid catalyst with outstanding activity. For this study, KSF-clay was characterized by X-ray photoelectron spectroscopy and temperature-programmed desorption of ammonia. Additionally, studies of the adsorption of ethanol, propan-2-ol, and acetic acid molecules over KSF-clay surface to establish their thermal stability species were studied by diffuse reflectance infrared Fourier transform spectroscopy. The relationship between the properties of KSF-clay and the adsorption-interaction process with organic molecules is related to its performance as an acid catalyst.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"10 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00606-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The KSF-clay is a material that presents a high density of acidic active sites, ideal for being a heterogeneous acid catalyst with outstanding activity. For this study, KSF-clay was characterized by X-ray photoelectron spectroscopy and temperature-programmed desorption of ammonia. Additionally, studies of the adsorption of ethanol, propan-2-ol, and acetic acid molecules over KSF-clay surface to establish their thermal stability species were studied by diffuse reflectance infrared Fourier transform spectroscopy. The relationship between the properties of KSF-clay and the adsorption-interaction process with organic molecules is related to its performance as an acid catalyst.

Graphical abstract

Abstract Image

液体酯化过程中 KSF-粘土的表面和物理化学特性:异相催化剂与前催化剂载体之间的界限
KSF 粘土是一种具有高密度酸性活性位点的材料,非常适合用作具有出色活性的异相酸催化剂。本研究通过 X 射线光电子能谱和氨的温度编程解吸对 KSF-粘土进行了表征。此外,还利用漫反射红外傅里叶变换光谱法研究了乙醇、2-丙醇和乙酸分子在 KSF-粘土表面的吸附情况,以确定其热稳定性物种。KSF 粘土的性质与有机分子的吸附-相互作用过程之间的关系与其作为酸催化剂的性能有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MRS Communications
MRS Communications MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
2.60
自引率
10.50%
发文量
166
审稿时长
>12 weeks
期刊介绍: MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信