Data‐driven nonlinear state observation for controlled systems: A kernel method and its analysis

Moritz Woelk, Wentao Tang
{"title":"Data‐driven nonlinear state observation for controlled systems: A kernel method and its analysis","authors":"Moritz Woelk, Wentao Tang","doi":"10.1002/cjce.25403","DOIUrl":null,"url":null,"abstract":"This work proposes a data‐driven state observation algorithm for nonlinear dynamical systems, when the true state trajectory is not measurable and hence the states information needs to be reconstructed from input and output measurements. Such a reduction is formed by <jats:italic>kernel canonical correlation analysis</jats:italic> (KCCA), which (i) implicitly maps the available input–output data into a higher‐dimensional feature space, namely the reproducing kernel Hilbert space (RKHS); (ii) finds a projection of the past input–output data and a projection of the future input–output data with maximal correlation; and (iii) identifies the projected inputs and outputs, namely the canonical variates, as the observed states. We adopt a least squares support vector machine (LS‐SVM) formulation for KCCA, which imposes regularization on the vectors that specify the projections and is amenable to convex optimization. We prove theoretically that, based on the statistical consistency of KCCA, the observed states determined by the proposed state observer has a guaranteed <jats:italic>correlativity with the actual states</jats:italic> (when properly transformed). Furthermore, such observed states, when supplemented with the information of succeeding inputs, can be used to predict the succeeding outputs with guaranteed <jats:italic>upper bound on the prediction error</jats:italic>. Case studies are performed on two numerical examples and an exothermic continuously stirred tank reactor (CSTR).","PeriodicalId":501204,"journal":{"name":"The Canadian Journal of Chemical Engineering","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cjce.25403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a data‐driven state observation algorithm for nonlinear dynamical systems, when the true state trajectory is not measurable and hence the states information needs to be reconstructed from input and output measurements. Such a reduction is formed by kernel canonical correlation analysis (KCCA), which (i) implicitly maps the available input–output data into a higher‐dimensional feature space, namely the reproducing kernel Hilbert space (RKHS); (ii) finds a projection of the past input–output data and a projection of the future input–output data with maximal correlation; and (iii) identifies the projected inputs and outputs, namely the canonical variates, as the observed states. We adopt a least squares support vector machine (LS‐SVM) formulation for KCCA, which imposes regularization on the vectors that specify the projections and is amenable to convex optimization. We prove theoretically that, based on the statistical consistency of KCCA, the observed states determined by the proposed state observer has a guaranteed correlativity with the actual states (when properly transformed). Furthermore, such observed states, when supplemented with the information of succeeding inputs, can be used to predict the succeeding outputs with guaranteed upper bound on the prediction error. Case studies are performed on two numerical examples and an exothermic continuously stirred tank reactor (CSTR).
受控系统的数据驱动非线性状态观测:核方法及其分析
当真实状态轨迹不可测量,因此需要从输入和输出测量结果中重建状态信息时,本研究提出了一种非线性动力学系统的数据驱动状态观测算法。这种还原是由核典型相关分析(KCCA)形成的,它(i)将可用的输入输出数据隐式映射到高维特征空间,即再现核希尔伯特空间(RKHS);(ii)找到过去输入输出数据的投影和未来输入输出数据的投影的最大相关性;以及(iii)确定投影的输入和输出,即典型变量,作为观测到的状态。我们对 KCCA 采用了最小二乘支持向量机 (LS-SVM) 方法,该方法对指定投影的向量进行了正则化处理,并可进行凸优化。我们从理论上证明,基于 KCCA 的统计一致性,由提议的状态观测器确定的观测状态与实际状态(经适当转换后)具有保证的相关性。此外,这种观察到的状态在得到后续输入信息的补充后,可以用来预测后续输出,并保证预测误差的上限。案例研究针对两个数值示例和一个放热式连续搅拌罐反应器(CSTR)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信