Anwesha Panda, Sneha Dey, Yogishree Arabinda Panda, Aditya Anurag Dash, Aloke Jana and Nirmalya Ghosh
{"title":"Influence of orbital angular momentum of light on random spin-split modes in disordered anisotropic optical media","authors":"Anwesha Panda, Sneha Dey, Yogishree Arabinda Panda, Aditya Anurag Dash, Aloke Jana and Nirmalya Ghosh","doi":"10.1088/1361-6455/ad5e21","DOIUrl":null,"url":null,"abstract":"Spin–orbit interaction of light in a disordered anisotropic medium is known to yield spin split modes in the momentum domain because of the random spatial gradient of the geometric phase of light. Here, we have studied the statistics of such spin-split modes for beams carrying intrinsic orbital angular momentum through the quantification of momentum domain entropy and investigated its dependence on various beam parameters. The influence of the spatial structure of the beam and the phase vortex on the statistics of the spin split modes were separately investigated using input Laguerre–Gaussian and Perfect Vortex beams passing through a disordered anisotropic medium with controlled input disorder parameter, which was realized by modulating the pixels of a liquid crystal-based spatial light modulator. The results of systematic investigations on the impact of beam waist, spot size and topological charge of the vortex beam show that the influence of the spot size on the emergence of the random spin split modes is much more significant as compared to the other beam parameters.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"7 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad5e21","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Spin–orbit interaction of light in a disordered anisotropic medium is known to yield spin split modes in the momentum domain because of the random spatial gradient of the geometric phase of light. Here, we have studied the statistics of such spin-split modes for beams carrying intrinsic orbital angular momentum through the quantification of momentum domain entropy and investigated its dependence on various beam parameters. The influence of the spatial structure of the beam and the phase vortex on the statistics of the spin split modes were separately investigated using input Laguerre–Gaussian and Perfect Vortex beams passing through a disordered anisotropic medium with controlled input disorder parameter, which was realized by modulating the pixels of a liquid crystal-based spatial light modulator. The results of systematic investigations on the impact of beam waist, spot size and topological charge of the vortex beam show that the influence of the spot size on the emergence of the random spin split modes is much more significant as compared to the other beam parameters.
期刊介绍:
Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.