The immunomodulatory effects and mechanisms of magnesium-containing implants in bone regeneration: A review

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
{"title":"The immunomodulatory effects and mechanisms of magnesium-containing implants in bone regeneration: A review","authors":"","doi":"10.1016/j.jma.2024.05.011","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional designs and developments of bone biomaterials mostly concentrate on the positive regulation of osteoblast lineage cells, but often ignore the importance of immune responses and the equilibrium between bone resorption mediated by osteoclasts and bone formation mediated by osteoblasts. Immune dysregulation is associated with an imbalance between pro-inflammatory and anti-inflammatory processes, which may influence the efficacy of bone therapy. Therefore, implanted biomaterials should appropriately and precisely modulate subsequent immune responses. Magnesium (Mg) has been used to fabricate various Mg alloys for bone repair because of its favorable attributes such as osteogenic potential, immune regulation characteristics, biodegradability, and biocompatibility. Various basic research and clinical trials have been already conducted in many countries to explore the physical properties of Mg-containing implants and their clinical outcomes in bone fracture and defect repair. Therefore, this review summarizes the immune response to Mg-containing implants, and further organizes the current research and development progress of Mg-containing implants. The review aims to offer an overview of the current knowledge on immunomodulation of Mg-containing implants and future challenges in their clinical application, which could provide further insight in the development of better strategies for the treatment of bone defect and fracture.</p></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213956724001853/pdfft?md5=5e349d8b0171b797a454a6e365938073&pid=1-s2.0-S2213956724001853-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956724001853","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional designs and developments of bone biomaterials mostly concentrate on the positive regulation of osteoblast lineage cells, but often ignore the importance of immune responses and the equilibrium between bone resorption mediated by osteoclasts and bone formation mediated by osteoblasts. Immune dysregulation is associated with an imbalance between pro-inflammatory and anti-inflammatory processes, which may influence the efficacy of bone therapy. Therefore, implanted biomaterials should appropriately and precisely modulate subsequent immune responses. Magnesium (Mg) has been used to fabricate various Mg alloys for bone repair because of its favorable attributes such as osteogenic potential, immune regulation characteristics, biodegradability, and biocompatibility. Various basic research and clinical trials have been already conducted in many countries to explore the physical properties of Mg-containing implants and their clinical outcomes in bone fracture and defect repair. Therefore, this review summarizes the immune response to Mg-containing implants, and further organizes the current research and development progress of Mg-containing implants. The review aims to offer an overview of the current knowledge on immunomodulation of Mg-containing implants and future challenges in their clinical application, which could provide further insight in the development of better strategies for the treatment of bone defect and fracture.

含镁植入物在骨再生中的免疫调节作用和机制:综述
骨生物材料的传统设计和开发大多集中于对成骨细胞系细胞的积极调控,但往往忽视了免疫反应以及破骨细胞介导的骨吸收和成骨细胞介导的骨形成之间平衡的重要性。免疫失调与促炎和抗炎过程之间的失衡有关,这可能会影响骨治疗的疗效。因此,植入的生物材料应适当、精确地调节随后的免疫反应。镁(Mg)具有成骨潜力、免疫调节特性、生物可降解性和生物相容性等优点,因此已被用于制造各种用于骨修复的镁合金。许多国家已经开展了各种基础研究和临床试验,以探索含镁植入物的物理性质及其在骨折和缺损修复中的临床效果。因此,本综述总结了含镁植入物的免疫反应,并进一步梳理了目前含镁植入物的研究和开发进展。该综述旨在概述目前有关含镁植入物免疫调节的知识以及其临床应用的未来挑战,从而为开发更好的骨缺损和骨折治疗策略提供更深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信