Weakly porous sets and Muckenhoupt Ap distance functions

IF 1.7 2区 数学 Q1 MATHEMATICS
{"title":"Weakly porous sets and Muckenhoupt Ap distance functions","authors":"","doi":"10.1016/j.jfa.2024.110558","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the class of weakly porous sets in Euclidean spaces. As our first main result we show that the distance weight <span><math><mi>w</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>dist</mi><mspace></mspace><msup><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>α</mi></mrow></msup></math></span> belongs to the Muckenhoupt class <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, for some <span><math><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span>, if and only if <span><math><mi>E</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is weakly porous. We also give a precise quantitative version of this characterization in terms of the so-called Muckenhoupt exponent of <em>E</em>. When <em>E</em> is weakly porous, we obtain a similar quantitative characterization of <span><math><mi>w</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, for <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span>, as well. At the end of the paper, we give an example of a set <span><math><mi>E</mi><mo>⊂</mo><mi>R</mi></math></span> which is not weakly porous but for which <span><math><mi>w</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>∖</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> for every <span><math><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn></math></span> and <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span>.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624002465/pdfft?md5=94e5160f264d3666ae1b2e160d10d5b3&pid=1-s2.0-S0022123624002465-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624002465","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the class of weakly porous sets in Euclidean spaces. As our first main result we show that the distance weight w(x)=dist(x,E)α belongs to the Muckenhoupt class A1, for some α>0, if and only if ERn is weakly porous. We also give a precise quantitative version of this characterization in terms of the so-called Muckenhoupt exponent of E. When E is weakly porous, we obtain a similar quantitative characterization of wAp, for 1<p<, as well. At the end of the paper, we give an example of a set ER which is not weakly porous but for which wApA1 for every 0<α<1 and 1<p<.

弱多孔集合和穆肯霍普 Ap 距离函数
我们考虑欧几里得空间中的弱多孔集合类。作为我们的第一个主要结果,我们证明了距离权重属于 Muckenhoupt 类 ,对于某些 ,当且仅当 是弱多孔集。我们还给出了这一特征的精确定量版本,即所谓的Ⅳ的穆肯霍普特指数。 当Ⅳ为弱多孔时,我们对Ⅳ也得到了类似的定量特征。在本文的最后,我们给出了一个集合的例子,这个集合不是弱多孔的,但是对于每个 和 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信