Enhancement of System Observability During System-Level Radiation Testing Through Total Current Consumption Monitoring

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ivan Slipukhin;Andrea Coronetti;Rubén García Alía;Frédéric Saigné;Jérôme Boch;Luigi Dilillo;Ygor Q. Aguiar;Carlo Cazzaniga;Maria Kastriotou;Torran Dodd
{"title":"Enhancement of System Observability During System-Level Radiation Testing Through Total Current Consumption Monitoring","authors":"Ivan Slipukhin;Andrea Coronetti;Rubén García Alía;Frédéric Saigné;Jérôme Boch;Luigi Dilillo;Ygor Q. Aguiar;Carlo Cazzaniga;Maria Kastriotou;Torran Dodd","doi":"10.1109/TNS.2024.3424201","DOIUrl":null,"url":null,"abstract":"System-level testing of electronics is an affordable method of assessment of the performance of complete electronic systems designed for applications in the radiation environment. Compared to component-level testing, system-level test offers a much smaller degree of observability about the performance of particular system elements. The information received during the irradiation of a system might be therefore not sufficient for the identification of every system under test (SUT) malfunction. As a consequence, no action might be taken to recover the system operation while certain parts of its functionality would be lost due to the radiation-induced effects. This can lead to the incorrect execution of the system-level test and improper conclusions about radiation-induced effects. The present paper demonstrates a method allowing an efficient identification of system-level failures based on the system total current consumption monitoring. The proposed technique can be easily implemented with common instrumentation and at the same time provides valuable feedback on SUT operation. The retrieved current consumption information can be used to identify system failures that may be not observable through the communication channels that are by default included in the tested setup. Furthermore, the posttest analysis can be performed on the collected data to investigate the SUT condition along the complete timeline of its irradiation. The verification of the proposed method was performed during the qualification test of a system designed for applications at the high-energy particle accelerator facility.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10587020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10587020/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

System-level testing of electronics is an affordable method of assessment of the performance of complete electronic systems designed for applications in the radiation environment. Compared to component-level testing, system-level test offers a much smaller degree of observability about the performance of particular system elements. The information received during the irradiation of a system might be therefore not sufficient for the identification of every system under test (SUT) malfunction. As a consequence, no action might be taken to recover the system operation while certain parts of its functionality would be lost due to the radiation-induced effects. This can lead to the incorrect execution of the system-level test and improper conclusions about radiation-induced effects. The present paper demonstrates a method allowing an efficient identification of system-level failures based on the system total current consumption monitoring. The proposed technique can be easily implemented with common instrumentation and at the same time provides valuable feedback on SUT operation. The retrieved current consumption information can be used to identify system failures that may be not observable through the communication channels that are by default included in the tested setup. Furthermore, the posttest analysis can be performed on the collected data to investigate the SUT condition along the complete timeline of its irradiation. The verification of the proposed method was performed during the qualification test of a system designed for applications at the high-energy particle accelerator facility.
通过总电流消耗监控提高系统级辐射测试期间的系统可观察性
电子产品的系统级测试是评估为辐射环境应用而设计的完整电子系统性能的一种经济实惠的方法。与元件级测试相比,系统级测试对特定系统元件性能的可观测性要小得多。因此,系统辐照期间获得的信息可能不足以识别每个被测系统(SUT)的故障。因此,可能不会采取任何措施来恢复系统运行,而系统的某些部分功能却会因辐射引起的影响而丧失。这可能会导致系统级测试的错误执行,以及对辐射诱发效应得出不恰当的结论。本文展示了一种基于系统总电流消耗监测的系统级故障有效识别方法。所提出的技术可以通过普通仪器轻松实现,同时还能提供有关 SUT 运行情况的宝贵反馈。检索到的电流消耗信息可用于识别系统故障,这些故障可能无法通过通信通道观测到,而通信通道默认包含在测试设置中。此外,还可以对收集到的数据进行测试后分析,以调查 SUT 在整个辐照时间段内的状况。在对一个为高能粒子加速器应用而设计的系统进行鉴定测试时,对所提出的方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nuclear Science
IEEE Transactions on Nuclear Science 工程技术-工程:电子与电气
CiteScore
3.70
自引率
27.80%
发文量
314
审稿时长
6.2 months
期刊介绍: The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years. The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信