Vastly Synergistic Fe2CuNiS4-Nanoarchitectures Anchored 2D-Nano-Sandwich Derived from Flower-Like-CuFeS2/N-Graphene and Cube-Like-NiFeS2/N-CNTs for Water Oxidation and Nitrophenol Reduction

IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gopiraman Mayakrishnan, Ramkumar Vanaraj, Junpeng Xiong, Muhammad Farooq, Azeem Ullah, Keqin Zhang, Seong Cheol Kim, Ick Soo Kim
{"title":"Vastly Synergistic Fe2CuNiS4-Nanoarchitectures Anchored 2D-Nano-Sandwich Derived from Flower-Like-CuFeS2/N-Graphene and Cube-Like-NiFeS2/N-CNTs for Water Oxidation and Nitrophenol Reduction","authors":"Gopiraman Mayakrishnan,&nbsp;Ramkumar Vanaraj,&nbsp;Junpeng Xiong,&nbsp;Muhammad Farooq,&nbsp;Azeem Ullah,&nbsp;Keqin Zhang,&nbsp;Seong Cheol Kim,&nbsp;Ick Soo Kim","doi":"10.1002/eem2.12788","DOIUrl":null,"url":null,"abstract":"<p>Surface area, pore properties, synergistic behavior, homogenous dispersion, and interactions between carbon matrix and metal-nanostructures are the key factors for achieving the better performance of carbon-metal based (electro)catalysts. However, the traditional hydro- or solvothermal preparation of (electro)catalysts, particularly, bi- or tri-metallic nanostructures anchored graphene (G) or carbon nanotubes (CNTs), often pose to poor metal–support interaction, low synergism, and patchy dispersion. At first, bimetallic flower-like-CuFeS<sub>2</sub>/NG and cube-like-NiFeS<sub>2</sub>/NCNTs nanocomposites were prepared by solvothermal method. The resultant bimetallic nanocomposites were employed to derive the 2D-nano-sandwiched Fe<sub>2</sub>CuNiS<sub>4</sub>/NGCNTs-SW (electro)catalyst by a very simple and green urea-mediated “mix-heat” method. The desired physicochemical properties of Fe<sub>2</sub>CuNiS<sub>4</sub>/NGCNTs-SW such as multiple active sites, strong metal-support interaction, homogenous dispersion and enhanced surface area were confirmed by various microscopic and spectroscopic techniques. To the best of our knowledge, this is the first urea-mediated “mix-heat” method for preparing 2D-nano-sandwiched carbon-metal-based (electro)catalysts. The Fe<sub>2</sub>CuNiS<sub>4</sub>/NGCNTs-SW was found to be highly effective for alkaline-mediated oxygen evolution reaction at low onset potential of 284.24 mV, and the stable current density of 10 mA cm<sup>−2</sup> in 1.0 <span>m</span> KOH for 10 h. Further, the Fe<sub>2</sub>CuNiS<sub>4</sub>/NGCNTs-SW demonstrated excellent catalytic activity in the reduction of 4-nitrophenol with good k<sub>app</sub> value of 87.71 × 10<sup>−2</sup> s<sup>−1</sup> and excellent reusability over five cycles. Overall, the developed urea-mediated “mix-heat” method is highly efficient for the preparation of metal-nanoarchitectures anchored 2D-nano-sandwiched (electro)catalysts with high synergism, uniform dispersion and excellent metal-support interaction.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"7 6","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12788","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12788","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Surface area, pore properties, synergistic behavior, homogenous dispersion, and interactions between carbon matrix and metal-nanostructures are the key factors for achieving the better performance of carbon-metal based (electro)catalysts. However, the traditional hydro- or solvothermal preparation of (electro)catalysts, particularly, bi- or tri-metallic nanostructures anchored graphene (G) or carbon nanotubes (CNTs), often pose to poor metal–support interaction, low synergism, and patchy dispersion. At first, bimetallic flower-like-CuFeS2/NG and cube-like-NiFeS2/NCNTs nanocomposites were prepared by solvothermal method. The resultant bimetallic nanocomposites were employed to derive the 2D-nano-sandwiched Fe2CuNiS4/NGCNTs-SW (electro)catalyst by a very simple and green urea-mediated “mix-heat” method. The desired physicochemical properties of Fe2CuNiS4/NGCNTs-SW such as multiple active sites, strong metal-support interaction, homogenous dispersion and enhanced surface area were confirmed by various microscopic and spectroscopic techniques. To the best of our knowledge, this is the first urea-mediated “mix-heat” method for preparing 2D-nano-sandwiched carbon-metal-based (electro)catalysts. The Fe2CuNiS4/NGCNTs-SW was found to be highly effective for alkaline-mediated oxygen evolution reaction at low onset potential of 284.24 mV, and the stable current density of 10 mA cm−2 in 1.0 m KOH for 10 h. Further, the Fe2CuNiS4/NGCNTs-SW demonstrated excellent catalytic activity in the reduction of 4-nitrophenol with good kapp value of 87.71 × 10−2 s−1 and excellent reusability over five cycles. Overall, the developed urea-mediated “mix-heat” method is highly efficient for the preparation of metal-nanoarchitectures anchored 2D-nano-sandwiched (electro)catalysts with high synergism, uniform dispersion and excellent metal-support interaction.

Abstract Image

Abstract Image

由花状-CuFeS2/N-石墨烯和立方体-NiFeS2/N-CNT 衍生的具有巨大协同效应的 Fe2CuNiS4 纳米结构锚定二维纳米夹层,用于水氧化和硝基苯酚还原
表面积、孔隙特性、协同行为、均匀分散以及碳基质与金属纳米结构之间的相互作用是实现碳-金属(电)催化剂更佳性能的关键因素。然而,传统的水热法或溶热法制备(电)催化剂,特别是锚定石墨烯(G)或碳纳米管(CNT)的双金属或三金属纳米结构,往往会造成金属与支撑物相互作用不良、协同性低和分散不均匀等问题。首先,采用溶热法制备了双金属花状-CuFeS2/NG 和立方体状-NiFeS2/CNNTs 纳米复合材料。通过一种非常简单和绿色的尿素介导的 "混合加热 "方法,将得到的双金属纳米复合材料用于制备二维纳米砂织 Fe2CuNiS4/NGCNTs-SW(电)催化剂。各种显微镜和光谱技术证实了 Fe2CuNiS4/NGCNTs-SW 所具有的理想理化特性,如多活性位点、强金属-支撑相互作用、均匀分散和增大的比表面积。据我们所知,这是第一种以尿素为介质的 "混合加热 "法制备二维纳米砂基碳-金属(电)催化剂。研究发现,Fe2CuNiS4/NGCNTs-SW 对碱介导的氧进化反应非常有效,起始电位低至 284.24 mV,在 1.0 m KOH 中 10 h 的稳定电流密度为 10 mA cm-2。总之,所开发的尿素介导的 "混合加热 "方法可高效制备锚定金属纳米结构的二维纳米砂织(电)催化剂,该方法具有高度的协同性、均匀的分散性和优异的金属-支撑相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信