ChangJin Han, Jeong Hwan Chun, Chan Hun Kim, Do Heui Kim
{"title":"Mechanochemical Synthesis of Multicomponent Bismuth-Based Molybdate Catalysts for Propylene Ammoxidation to Produce Acrylonitrile","authors":"ChangJin Han, Jeong Hwan Chun, Chan Hun Kim, Do Heui Kim","doi":"10.1007/s11814-024-00218-x","DOIUrl":null,"url":null,"abstract":"<div><p>Activities and structures of metal oxide catalysts significantly rely on the synthesis procedures and conditions. In this study, a novel solvent-free mechanochemical method was employed to prepare catalysts for the ammoxidation of propylene. Multicomponent oxide catalysts containing bismuth, iron, cobalt, and molybdenum were successfully synthesized using a ball mill mixer and zirconia jars without the use of nitric acid. The mechanochemically synthesized catalysts exhibited higher catalytic performance than traditional catalysts prepared by coprecipitation (CP) and rotary evaporation (RE) methods in propylene ammoxidation. The synergistic effect of the mechanochemical method was investigated using various analyses, such as inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). ICP-AES analysis revealed that the ball-mill-based catalysts contained metal elements in designated amounts more accurately than those prepared by the CP or RE methods. Propylene ammoxidation reactions with ball-milled catalysts showed a synergistic effect and improved acrylonitrile yield, especially at a 50:50 wt% ratio of Bi<sub>2</sub>Mo<sub>3</sub>O<sub>12</sub> to Fe<sub>0.36</sub>Co<sub>0.64</sub>MoO<sub>4</sub>. Comprehensive analyses, including XRD, SEM–EDS, Raman spectroscopy, and XPS, support the conclusion that the improved performance of the mechanochemically synthesized catalysts can be attributed to the increased interaction between different phases prepared under mechanical forces, leading to a favorable change in the oxidation state of iron.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 9","pages":"2541 - 2551"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00218-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Activities and structures of metal oxide catalysts significantly rely on the synthesis procedures and conditions. In this study, a novel solvent-free mechanochemical method was employed to prepare catalysts for the ammoxidation of propylene. Multicomponent oxide catalysts containing bismuth, iron, cobalt, and molybdenum were successfully synthesized using a ball mill mixer and zirconia jars without the use of nitric acid. The mechanochemically synthesized catalysts exhibited higher catalytic performance than traditional catalysts prepared by coprecipitation (CP) and rotary evaporation (RE) methods in propylene ammoxidation. The synergistic effect of the mechanochemical method was investigated using various analyses, such as inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). ICP-AES analysis revealed that the ball-mill-based catalysts contained metal elements in designated amounts more accurately than those prepared by the CP or RE methods. Propylene ammoxidation reactions with ball-milled catalysts showed a synergistic effect and improved acrylonitrile yield, especially at a 50:50 wt% ratio of Bi2Mo3O12 to Fe0.36Co0.64MoO4. Comprehensive analyses, including XRD, SEM–EDS, Raman spectroscopy, and XPS, support the conclusion that the improved performance of the mechanochemically synthesized catalysts can be attributed to the increased interaction between different phases prepared under mechanical forces, leading to a favorable change in the oxidation state of iron.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.