The Thermal Energy Storage Characteristics of Oleic Acid Modified ZnO-Decorated Polymer Matrix-Supported Composite Phase Change Materials: Synthesis and Characterization

IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mehmet Selçuk MERT, Hatice Hande MERT
{"title":"The Thermal Energy Storage Characteristics of Oleic Acid Modified ZnO-Decorated Polymer Matrix-Supported Composite Phase Change Materials: Synthesis and Characterization","authors":"Mehmet Selçuk MERT,&nbsp;Hatice Hande MERT","doi":"10.1002/mame.202400156","DOIUrl":null,"url":null,"abstract":"<p>In this study, modified nano zinc oxide (ZnO)-reinforced polymer-supported novel thermally enhanced form-stable composite phase change materials (PCMs) are presented, which are prepared via water in oil emulsion polymerization and following impregnation process steps. First, ZnO nanoparticles are modified with oleic acid (OA) to obtain lipophilic structures for emulsion stability, which are designed to take a role as a heat transfer activator. To ensure the shape stabilization of n-hexadecane used as organic PCM, polymeric support materials are synthesized in the presence of modified ZnO nanoparticles (ZnO@OA). The polymeric frameworks exhibit open porous morphology, and the thermal stability of the support matrix improves with the addition of ZnO nanofiller. In the second step, composite PCMs are prepared by incorporation of n-hexadecane with the solvent-assisted vacuum impregnation method into polymer composites. The 1.0% ZnO@OA incorporated composite PCM has the highest incorporation ratio and exhibits a thermal storage capability (<i>η)</i> of 100%. According to the T-history and thermal conductivity tests, it is observed that the heat conduction rate is enhanced with the addition of ZnO@OA nanofiller. The conclusion is that the obtained ZnO@OA integrated composite PCMs have a remarkable potential for latent heat storage applications requiring low temperature in the range of 5–25 °C.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400156","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400156","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, modified nano zinc oxide (ZnO)-reinforced polymer-supported novel thermally enhanced form-stable composite phase change materials (PCMs) are presented, which are prepared via water in oil emulsion polymerization and following impregnation process steps. First, ZnO nanoparticles are modified with oleic acid (OA) to obtain lipophilic structures for emulsion stability, which are designed to take a role as a heat transfer activator. To ensure the shape stabilization of n-hexadecane used as organic PCM, polymeric support materials are synthesized in the presence of modified ZnO nanoparticles (ZnO@OA). The polymeric frameworks exhibit open porous morphology, and the thermal stability of the support matrix improves with the addition of ZnO nanofiller. In the second step, composite PCMs are prepared by incorporation of n-hexadecane with the solvent-assisted vacuum impregnation method into polymer composites. The 1.0% ZnO@OA incorporated composite PCM has the highest incorporation ratio and exhibits a thermal storage capability (η) of 100%. According to the T-history and thermal conductivity tests, it is observed that the heat conduction rate is enhanced with the addition of ZnO@OA nanofiller. The conclusion is that the obtained ZnO@OA integrated composite PCMs have a remarkable potential for latent heat storage applications requiring low temperature in the range of 5–25 °C.

Abstract Image

油酸改性氧化锌聚合物基质支撑复合相变材料的热能存储特性:合成与表征
本研究介绍了改性纳米氧化锌(ZnO)增强聚合物支撑的新型热增强型稳定复合相变材料(PCMs),该材料是通过油包水型乳液聚合和浸渍工艺步骤制备的。首先,用油酸(OA)对氧化锌纳米粒子进行改性,以获得具有乳液稳定性的亲油性结构,从而发挥传热激活剂的作用。为了确保用作有机 PCM 的正十六烷的形状稳定,在改性 ZnO 纳米粒子(ZnO@OA)的存在下合成了聚合物支撑材料。聚合物框架呈现出开放的多孔形态,并且随着氧化锌纳米填料的加入,支撑基质的热稳定性得到了改善。第二步,采用溶剂辅助真空浸渍法在聚合物复合材料中加入正十六烷,制备复合 PCM。掺入 1.0% ZnO@OA 的复合 PCM 的掺入率最高,蓄热能力 (η) 达到 100%。根据 T-history 和热导率测试,可以观察到添加 ZnO@OA 纳米填料后热传导率得到了提高。结论是,所获得的 ZnO@OA 集成复合 PCM 在需要 5-25 ℃ 低温的潜热存储应用中具有显著的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信