On Fidelity-Oriented Entanglement Distribution for Quantum Switches

IF 3.7 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ziyue Jia;Lin Chen
{"title":"On Fidelity-Oriented Entanglement Distribution for Quantum Switches","authors":"Ziyue Jia;Lin Chen","doi":"10.1109/JETCAS.2024.3425712","DOIUrl":null,"url":null,"abstract":"We consider a star-shaped quantum network with a quantum switch in the center serving a number of requests, each characterized by two non-classical QoS requirements, the end-to-end entanglement delivery rate and the fidelity of the delivered entanglements. The central task of the switch is to allocate the limited entanglement resources among requests to maximize the system performance. We formulate the fundamental entanglement distribution problem where the switch decides 1) which requests to admit, and 2) as multiple requests may share a same quantum link, how to distributed the limited link-level entanglement resources among those competing requests. We then design a framework of joint entanglement purification scheduling and distribution for quantum switches. Our entanglement purification scheduling algorithm seeks to use minimal link-level entanglement resources to satisfy the QoS requirement of a single request. Our entanglement distribution algorithm further allocates the limited entanglement resources among multiple requests to maximize the overall utility by integrating the designed entanglement purification scheduling algorithm. We establish theoretical performance guarantee of our proposition, which is complemented by extensive numerical experiments demonstrating its effectiveness in a variety of network settings.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 3","pages":"495-506"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10589912/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a star-shaped quantum network with a quantum switch in the center serving a number of requests, each characterized by two non-classical QoS requirements, the end-to-end entanglement delivery rate and the fidelity of the delivered entanglements. The central task of the switch is to allocate the limited entanglement resources among requests to maximize the system performance. We formulate the fundamental entanglement distribution problem where the switch decides 1) which requests to admit, and 2) as multiple requests may share a same quantum link, how to distributed the limited link-level entanglement resources among those competing requests. We then design a framework of joint entanglement purification scheduling and distribution for quantum switches. Our entanglement purification scheduling algorithm seeks to use minimal link-level entanglement resources to satisfy the QoS requirement of a single request. Our entanglement distribution algorithm further allocates the limited entanglement resources among multiple requests to maximize the overall utility by integrating the designed entanglement purification scheduling algorithm. We establish theoretical performance guarantee of our proposition, which is complemented by extensive numerical experiments demonstrating its effectiveness in a variety of network settings.
论量子开关面向保真度的纠缠分发
我们考虑了一个星形量子网络,其中心有一个量子交换机,为多个请求提供服务,每个请求都有两个非经典的服务质量要求,即端到端纠缠交付率和交付纠缠的保真度。交换机的核心任务是在请求之间分配有限的纠缠资源,以最大限度地提高系统性能。我们提出了基本的纠缠分配问题,即交换机决定:1)接纳哪些请求;2)由于多个请求可能共享同一量子链路,如何在这些相互竞争的请求之间分配有限的链路级纠缠资源。然后,我们为量子交换机设计了一个联合纠缠净化调度和分配框架。我们的纠缠净化调度算法力求使用最少的链路级纠缠资源来满足单个请求的 QoS 要求。我们的纠缠分配算法通过整合所设计的纠缠净化调度算法,进一步在多个请求之间分配有限的纠缠资源,以实现整体效用最大化。我们建立了我们的理论性能保证,并通过大量数值实验证明了它在各种网络环境中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
2.20%
发文量
86
期刊介绍: The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信