Low-resolution prior equilibrium network for CT reconstruction

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yijie Yang, Qifeng Gao and Yuping Duan
{"title":"Low-resolution prior equilibrium network for CT reconstruction","authors":"Yijie Yang, Qifeng Gao and Yuping Duan","doi":"10.1088/1361-6420/ad5d0d","DOIUrl":null,"url":null,"abstract":"The unrolling method has been investigated for learning variational models in x-ray computed tomography. However, for incomplete data reconstruction, such as sparse-view and limited-angle problems, the unrolling method of gradient descent of the energy minimization problem cannot yield satisfactory results. In this paper, we present an effective CT reconstruction model, where the low-resolution image is introduced as a regularization for incomplete data problems. In what follows, we utilize the deep equilibrium approach to unfolding of the gradient descent algorithm, thereby constructing the backbone network architecture for solving the minimization model. We theoretically discuss the convergence of the proposed low-resolution prior equilibrium (LRPE) model and provide the necessary conditions to guarantee its convergence. Experimental results on both sparse-view and limited-angle reconstruction problems are provided, demonstrating that our end-to-end LRPE model outperforms other state-of-the-art methods in terms of noise reduction, contrast-to-noise ratio, and preservation of edge details.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad5d0d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The unrolling method has been investigated for learning variational models in x-ray computed tomography. However, for incomplete data reconstruction, such as sparse-view and limited-angle problems, the unrolling method of gradient descent of the energy minimization problem cannot yield satisfactory results. In this paper, we present an effective CT reconstruction model, where the low-resolution image is introduced as a regularization for incomplete data problems. In what follows, we utilize the deep equilibrium approach to unfolding of the gradient descent algorithm, thereby constructing the backbone network architecture for solving the minimization model. We theoretically discuss the convergence of the proposed low-resolution prior equilibrium (LRPE) model and provide the necessary conditions to guarantee its convergence. Experimental results on both sparse-view and limited-angle reconstruction problems are provided, demonstrating that our end-to-end LRPE model outperforms other state-of-the-art methods in terms of noise reduction, contrast-to-noise ratio, and preservation of edge details.
用于 CT 重建的低分辨率先验平衡网络
在 X 射线计算机断层扫描中,已经研究了用于学习变分模型的展开方法。然而,对于不完整数据重建,如稀疏视图和有限角度问题,能量最小化问题梯度下降的展开法无法获得令人满意的结果。本文提出了一种有效的 CT 重建模型,其中引入了低分辨率图像作为不完整数据问题的正则化。接下来,我们利用深度均衡方法来展开梯度下降算法,从而构建出求解最小化模型的骨干网络架构。我们从理论上讨论了所提出的低分辨率先验均衡(LRPE)模型的收敛性,并提供了保证其收敛性的必要条件。我们提供了稀疏视图和有限角度重建问题的实验结果,证明我们的端到端 LRPE 模型在降噪、对比度-噪声比和边缘细节保留方面优于其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信