{"title":"Low-resolution prior equilibrium network for CT reconstruction","authors":"Yijie Yang, Qifeng Gao and Yuping Duan","doi":"10.1088/1361-6420/ad5d0d","DOIUrl":null,"url":null,"abstract":"The unrolling method has been investigated for learning variational models in x-ray computed tomography. However, for incomplete data reconstruction, such as sparse-view and limited-angle problems, the unrolling method of gradient descent of the energy minimization problem cannot yield satisfactory results. In this paper, we present an effective CT reconstruction model, where the low-resolution image is introduced as a regularization for incomplete data problems. In what follows, we utilize the deep equilibrium approach to unfolding of the gradient descent algorithm, thereby constructing the backbone network architecture for solving the minimization model. We theoretically discuss the convergence of the proposed low-resolution prior equilibrium (LRPE) model and provide the necessary conditions to guarantee its convergence. Experimental results on both sparse-view and limited-angle reconstruction problems are provided, demonstrating that our end-to-end LRPE model outperforms other state-of-the-art methods in terms of noise reduction, contrast-to-noise ratio, and preservation of edge details.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"141 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad5d0d","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The unrolling method has been investigated for learning variational models in x-ray computed tomography. However, for incomplete data reconstruction, such as sparse-view and limited-angle problems, the unrolling method of gradient descent of the energy minimization problem cannot yield satisfactory results. In this paper, we present an effective CT reconstruction model, where the low-resolution image is introduced as a regularization for incomplete data problems. In what follows, we utilize the deep equilibrium approach to unfolding of the gradient descent algorithm, thereby constructing the backbone network architecture for solving the minimization model. We theoretically discuss the convergence of the proposed low-resolution prior equilibrium (LRPE) model and provide the necessary conditions to guarantee its convergence. Experimental results on both sparse-view and limited-angle reconstruction problems are provided, demonstrating that our end-to-end LRPE model outperforms other state-of-the-art methods in terms of noise reduction, contrast-to-noise ratio, and preservation of edge details.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.