{"title":"A Penalty-Free and Essentially Stabilization-Free DG Method for Convection-Dominated Second-Order Elliptic Problems","authors":"Huoyuan Duan, Junhua Ma","doi":"10.1007/s10915-024-02615-0","DOIUrl":null,"url":null,"abstract":"<p>A new discontinuous Galerkin (DG) method is proposed and analyzed for general second-order elliptic problems. It features that local <span>\\(L^2\\)</span> projections are used to reconstruct the diffusion term and the convection term and that it does not need any penalty and even does not need any stabilization in the formulation. The Babus̆ka inf-sup stability is proven. The error estimates are established. More importantly, the new DG method can hold the SUPG-type stability for the convection; the SUPG-type optimal error estimates <span>\\({{\\mathcal {O}}}(h^{\\ell +1/2})\\)</span> is obtained for the problem with a dominating convection for the <span>\\(\\ell \\)</span>-th order (<span>\\(\\ell \\ge 0\\)</span>) discontinuous element. Numerical results are provided.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"87 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02615-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A new discontinuous Galerkin (DG) method is proposed and analyzed for general second-order elliptic problems. It features that local \(L^2\) projections are used to reconstruct the diffusion term and the convection term and that it does not need any penalty and even does not need any stabilization in the formulation. The Babus̆ka inf-sup stability is proven. The error estimates are established. More importantly, the new DG method can hold the SUPG-type stability for the convection; the SUPG-type optimal error estimates \({{\mathcal {O}}}(h^{\ell +1/2})\) is obtained for the problem with a dominating convection for the \(\ell \)-th order (\(\ell \ge 0\)) discontinuous element. Numerical results are provided.
期刊介绍:
Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering.
The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.