Evaluation of a newly developed oral and maxillofacial surgical robotic platform (KD-SR-01) in head and neck surgery: a preclinical trial in porcine models
IF 10.8 1区 医学Q1 DENTISTRY, ORAL SURGERY & MEDICINE
{"title":"Evaluation of a newly developed oral and maxillofacial surgical robotic platform (KD-SR-01) in head and neck surgery: a preclinical trial in porcine models","authors":"Zhongkai Ma, Zhiyong Guo, Zhangfan Ding, Chang Cao, Jialu He, Heyi Tang, Yufei Hua, Jiawei Hong, Qiang Shen, Grace Paka Lubamba, Xiaoyi Wang, Zheng Yang, Guiquan Zhu, Chunjie Li","doi":"10.1038/s41368-024-00318-8","DOIUrl":null,"url":null,"abstract":"<p>Traditional open head and neck surgery often leaves permanent scars, significantly affecting appearance. The emergence of surgical robots has introduced a new era for minimally invasive surgery. However, the complex anatomy of the head and neck region, particularly the oral and maxillofacial areas, combined with the high costs associated with established systems such as the da Vinci, has limited the widespread adoption of surgical robots in this field. Recently, surgical robotic platform in China has developed rapidly, exemplified by the promise shown by the KangDuo Surgical Robot (KD-SR). Although the KD-SR has achieved some results comparable to the da Vinci surgical robot in urology and colorectal surgery, its performance in complex head and neck regions remains untested. This study evaluated the feasibility, effectiveness, and safety of the newly developed KD-SR-01, comparing it with standard endoscopic systems in head and neck procedures on porcine models. We performed parotidectomy, submandibular gland resection, and neck dissection, collected baseline characteristics, perioperative data, and specifically assessed cognitive workload using the NASA-TLX. None of the robotic procedures were converted to endoscopic or open surgery. The results showed no significant difference in operation time between the two groups (<i>P</i> = 0.126), better intraoperative bleeding control (<i>P</i> = 0.001), and a significant reduction in cognitive workload (<i>P</i> < 0.001) in the robotic group. In conclusion, the KD-SR-01 is feasible, effective, and safe for head and neck surgery. Further investigation through well-designed clinical trials with long-term follow-up is necessary to establish the full potential of this emerging robotic platform.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41368-024-00318-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional open head and neck surgery often leaves permanent scars, significantly affecting appearance. The emergence of surgical robots has introduced a new era for minimally invasive surgery. However, the complex anatomy of the head and neck region, particularly the oral and maxillofacial areas, combined with the high costs associated with established systems such as the da Vinci, has limited the widespread adoption of surgical robots in this field. Recently, surgical robotic platform in China has developed rapidly, exemplified by the promise shown by the KangDuo Surgical Robot (KD-SR). Although the KD-SR has achieved some results comparable to the da Vinci surgical robot in urology and colorectal surgery, its performance in complex head and neck regions remains untested. This study evaluated the feasibility, effectiveness, and safety of the newly developed KD-SR-01, comparing it with standard endoscopic systems in head and neck procedures on porcine models. We performed parotidectomy, submandibular gland resection, and neck dissection, collected baseline characteristics, perioperative data, and specifically assessed cognitive workload using the NASA-TLX. None of the robotic procedures were converted to endoscopic or open surgery. The results showed no significant difference in operation time between the two groups (P = 0.126), better intraoperative bleeding control (P = 0.001), and a significant reduction in cognitive workload (P < 0.001) in the robotic group. In conclusion, the KD-SR-01 is feasible, effective, and safe for head and neck surgery. Further investigation through well-designed clinical trials with long-term follow-up is necessary to establish the full potential of this emerging robotic platform.
期刊介绍:
The International Journal of Oral Science covers various aspects of oral science and interdisciplinary fields, encompassing basic, applied, and clinical research. Topics include, but are not limited to:
Oral microbiology
Oral and maxillofacial oncology
Cariology
Oral inflammation and infection
Dental stem cells and regenerative medicine
Craniofacial surgery
Dental material
Oral biomechanics
Oral, dental, and maxillofacial genetic and developmental diseases
Craniofacial bone research
Craniofacial-related biomaterials
Temporomandibular joint disorder and osteoarthritis
The journal publishes peer-reviewed Articles presenting new research results and Review Articles offering concise summaries of specific areas in oral science.