Shuai Wu, Jie Gu, Ruiteng Li, Yuening Tang, Lingxiao Gao, Cuihua An, Qibo Deng, Libin Zhao, Ning Hu
{"title":"Progress on mechanical and tribological characterization of 2D materials by AFM force spectroscopy","authors":"Shuai Wu, Jie Gu, Ruiteng Li, Yuening Tang, Lingxiao Gao, Cuihua An, Qibo Deng, Libin Zhao, Ning Hu","doi":"10.1007/s40544-024-0864-9","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) materials are potential candidates for electronic devices due to their unique structures and exceptional physical properties, making them a focal point in nanotechnology research. Accurate assessment of the mechanical and tribological properties of 2D materials is imperative to fully exploit their potential across diverse applications. However, their nanoscale thickness and planar nature pose significant challenges in testing and characterizing their mechanical properties. Among the <i>in situ</i> characterization techniques, atomic force microscopy (AFM) has gained widespread applications in exploring the mechanical behaviour of nanomaterials, because of the easy measurement capability of nano force and displacement from the AFM tips. Specifically, AFM-based force spectroscopy is a common approach for studying the mechanical and tribological properties of 2D materials. This review comprehensively details the methods based on normal force spectroscopy, which are utilized to test and characterize the elastic and fracture properties, adhesion, and fatigue of 2D materials. Additionally, the methods using lateral force spectroscopy can characterize the interfacial properties of 2D materials, including surface friction of 2D materials, shear behaviour of interlayers as well as nanoflake-substrate interfaces. The influence of various factors, such as testing methods, external environments, and the properties of test samples, on the measured mechanical properties is also addressed. In the end, the current challenges and issues in AFM-based measurements of mechanical and tribological properties of 2D materials are discussed, which identifies the trend in the combination of multiple methods concerning the future development of the <i>in situ</i> testing techniques.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-024-0864-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) materials are potential candidates for electronic devices due to their unique structures and exceptional physical properties, making them a focal point in nanotechnology research. Accurate assessment of the mechanical and tribological properties of 2D materials is imperative to fully exploit their potential across diverse applications. However, their nanoscale thickness and planar nature pose significant challenges in testing and characterizing their mechanical properties. Among the in situ characterization techniques, atomic force microscopy (AFM) has gained widespread applications in exploring the mechanical behaviour of nanomaterials, because of the easy measurement capability of nano force and displacement from the AFM tips. Specifically, AFM-based force spectroscopy is a common approach for studying the mechanical and tribological properties of 2D materials. This review comprehensively details the methods based on normal force spectroscopy, which are utilized to test and characterize the elastic and fracture properties, adhesion, and fatigue of 2D materials. Additionally, the methods using lateral force spectroscopy can characterize the interfacial properties of 2D materials, including surface friction of 2D materials, shear behaviour of interlayers as well as nanoflake-substrate interfaces. The influence of various factors, such as testing methods, external environments, and the properties of test samples, on the measured mechanical properties is also addressed. In the end, the current challenges and issues in AFM-based measurements of mechanical and tribological properties of 2D materials are discussed, which identifies the trend in the combination of multiple methods concerning the future development of the in situ testing techniques.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.