A Multivalent DNA Nanoparticle/Peptide Hybrid Molecular Modality for the Modulation of Protein–Protein Interactions in the Tumor Microenvironment

IF 4 Q2 ENGINEERING, BIOMEDICAL
Jessica A. Roman, Michael Y. Girgis, Rocìo S. Prisby, Robyn P. Araujo, Paul Russo, Esra Oktay, Alessandra Luchini, Lance A. Liotta, Remi Veneziano, Amanda Haymond
{"title":"A Multivalent DNA Nanoparticle/Peptide Hybrid Molecular Modality for the Modulation of Protein–Protein Interactions in the Tumor Microenvironment","authors":"Jessica A. Roman,&nbsp;Michael Y. Girgis,&nbsp;Rocìo S. Prisby,&nbsp;Robyn P. Araujo,&nbsp;Paul Russo,&nbsp;Esra Oktay,&nbsp;Alessandra Luchini,&nbsp;Lance A. Liotta,&nbsp;Remi Veneziano,&nbsp;Amanda Haymond","doi":"10.1002/anbr.202300159","DOIUrl":null,"url":null,"abstract":"<p>Despite success in the treatment of some blood cancers and melanoma, positive response to immunotherapies remains disappointingly low in the treatment of solid tumors. The context of the molecular crosstalk within the tumor microenvironment can result in dysfunctional immune cell activation, leading to tumor tolerance and progression. Although modulating these protein–protein interactions (PPIs) is vital for appropriate immune cell activation and recognition, targeting nonenzymatic PPIs has proven to be fraught with challenges. To address this, a synthetic, multivalent molecular modality comprised of small interfering peptides precisely hybridized to a semirigid DNA scaffold is introduced. Herein, a prototype of this modality that targets the IL-33/ST2 signaling axis, which is associated with tumor tolerance and immunotherapy treatment failure is described. Using peptides that mimic the specific high-energy “hotspot” residues with which the IL-33/ST2 coreceptor, IL-1RAcP, interacts with the initial binary complex, this platform is shown to effectively bind IL-33/ST2 with a <i>K</i><sub>D</sub> of 110 n<span>m</span>. Additionally, this molecule effectively abrogates signal transduction in cell models at high nanomolar concentrations and is exquisitely selective for this complex over structurally similar PPIs within the same cytokine superfamily.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 7","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300159","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite success in the treatment of some blood cancers and melanoma, positive response to immunotherapies remains disappointingly low in the treatment of solid tumors. The context of the molecular crosstalk within the tumor microenvironment can result in dysfunctional immune cell activation, leading to tumor tolerance and progression. Although modulating these protein–protein interactions (PPIs) is vital for appropriate immune cell activation and recognition, targeting nonenzymatic PPIs has proven to be fraught with challenges. To address this, a synthetic, multivalent molecular modality comprised of small interfering peptides precisely hybridized to a semirigid DNA scaffold is introduced. Herein, a prototype of this modality that targets the IL-33/ST2 signaling axis, which is associated with tumor tolerance and immunotherapy treatment failure is described. Using peptides that mimic the specific high-energy “hotspot” residues with which the IL-33/ST2 coreceptor, IL-1RAcP, interacts with the initial binary complex, this platform is shown to effectively bind IL-33/ST2 with a KD of 110 nm. Additionally, this molecule effectively abrogates signal transduction in cell models at high nanomolar concentrations and is exquisitely selective for this complex over structurally similar PPIs within the same cytokine superfamily.

Abstract Image

用于调节肿瘤微环境中蛋白质-蛋白质相互作用的多价 DNA 纳米粒子/肽混合分子模式
尽管在治疗某些血癌和黑色素瘤方面取得了成功,但在治疗实体瘤方面,免疫疗法的阳性反应仍然很低,令人失望。肿瘤微环境中的分子串扰可导致免疫细胞激活功能失调,从而导致肿瘤耐受和进展。尽管调节这些蛋白-蛋白相互作用(PPIs)对适当的免疫细胞激活和识别至关重要,但针对非酶性 PPIs 的研究已被证明充满挑战。为了解决这个问题,我们引入了一种合成的多价分子模式,它由精确杂交到半刚性 DNA 支架上的小干扰肽组成。本文介绍了针对 IL-33/ST2 信号轴的这种模式的原型,IL-33/ST2 信号轴与肿瘤耐受和免疫疗法治疗失败有关。利用模仿 IL-33/ST2 核心受体 IL-1RAcP 与初始二元复合物相互作用的特定高能 "热点 "残基的多肽,该平台可有效结合 IL-33/ST2,KD 为 110 nm。此外,这种分子在高纳摩尔浓度下能有效地抑制细胞模型中的信号转导,而且对这种复合物具有极高的选择性,胜过同一细胞因子超家族中结构相似的 PPI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信