Luke C Bartelt, Mouad Fakhri, Grazyna Adamek, Magdalena Trybus, Anna Samelak-Czajka, Paulina Jackowiak, Agnieszka Fiszer, Craig B Lowe, Albert R La Spada, Pawel M Switonski
{"title":"Antibody-assisted selective isolation of Purkinje cell nuclei from mouse cerebellar tissue.","authors":"Luke C Bartelt, Mouad Fakhri, Grazyna Adamek, Magdalena Trybus, Anna Samelak-Czajka, Paulina Jackowiak, Agnieszka Fiszer, Craig B Lowe, Albert R La Spada, Pawel M Switonski","doi":"10.1016/j.crmeth.2024.100816","DOIUrl":null,"url":null,"abstract":"<p><p>We developed a method that utilizes fluorescent labeling of nuclear envelopes alongside cytometry sorting for the selective isolation of Purkinje cell (PC) nuclei. Beginning with SUN1 reporter mice, we GFP-tagged envelopes to confirm that PC nuclei could be accurately separated from other cell types. We then developed an antibody-based protocol to make PC nuclear isolation more robust and adaptable to cerebellar tissues of any genotypic background. Immunofluorescent labeling of the nuclear membrane protein RanBP2 enabled the isolation of PC nuclei from C57BL/6 cerebellum. By analyzing the expression of PC markers, nuclear size, and nucleoli number, we confirmed that our method delivers a pure fraction of PC nuclei. To demonstrate its applicability, we isolated PC nuclei from spinocerebellar ataxia type 7 (SCA7) mice and identified transcriptional changes in known and new disease-associated genes. Access to pure PC nuclei offers insights into PC biology and pathology, including the nature of selective neuronal vulnerability.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294835/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We developed a method that utilizes fluorescent labeling of nuclear envelopes alongside cytometry sorting for the selective isolation of Purkinje cell (PC) nuclei. Beginning with SUN1 reporter mice, we GFP-tagged envelopes to confirm that PC nuclei could be accurately separated from other cell types. We then developed an antibody-based protocol to make PC nuclear isolation more robust and adaptable to cerebellar tissues of any genotypic background. Immunofluorescent labeling of the nuclear membrane protein RanBP2 enabled the isolation of PC nuclei from C57BL/6 cerebellum. By analyzing the expression of PC markers, nuclear size, and nucleoli number, we confirmed that our method delivers a pure fraction of PC nuclei. To demonstrate its applicability, we isolated PC nuclei from spinocerebellar ataxia type 7 (SCA7) mice and identified transcriptional changes in known and new disease-associated genes. Access to pure PC nuclei offers insights into PC biology and pathology, including the nature of selective neuronal vulnerability.
我们开发了一种方法,利用核包膜的荧光标记和细胞分拣技术选择性地分离普肯耶细胞(PC)核。从 SUN1 报告小鼠开始,我们对包膜进行了 GFP 标记,以确认 PC 细胞核能从其他类型的细胞中准确分离出来。然后,我们开发了一种基于抗体的方案,使 PC 核分离更加稳健,并适用于任何基因型背景的小脑组织。通过免疫荧光标记核膜蛋白RanBP2,我们从C57BL/6小脑中分离出了PC核。通过分析PC标记物的表达、核大小和核小体数量,我们证实我们的方法能得到纯净的PC核。为了证明该方法的适用性,我们从脊髓小脑共济失调 7 型(SCA7)小鼠体内分离出了 PC 核,并鉴定了已知和新的疾病相关基因的转录变化。纯 PC 核的获得有助于深入了解 PC 的生物学和病理学,包括选择性神经元脆弱性的本质。