Stepwise Transfer Learning for Expert-level Pediatric Brain Tumor MRI Segmentation in a Limited Data Scenario.
IF 8.1
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Aidan Boyd, Zezhong Ye, Sanjay P Prabhu, Michael C Tjong, Yining Zha, Anna Zapaishchykova, Sridhar Vajapeyam, Paul J Catalano, Hasaan Hayat, Rishi Chopra, Kevin X Liu, Ali Nabavizadeh, Adam C Resnick, Sabine Mueller, Daphne A Haas-Kogan, Hugo J W L Aerts, Tina Y Poussaint, Benjamin H Kann
下载PDF
{"title":"Stepwise Transfer Learning for Expert-level Pediatric Brain Tumor MRI Segmentation in a Limited Data Scenario.","authors":"Aidan Boyd, Zezhong Ye, Sanjay P Prabhu, Michael C Tjong, Yining Zha, Anna Zapaishchykova, Sridhar Vajapeyam, Paul J Catalano, Hasaan Hayat, Rishi Chopra, Kevin X Liu, Ali Nabavizadeh, Adam C Resnick, Sabine Mueller, Daphne A Haas-Kogan, Hugo J W L Aerts, Tina Y Poussaint, Benjamin H Kann","doi":"10.1148/ryai.230254","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To develop, externally test, and evaluate clinical acceptability of a deep learning pediatric brain tumor segmentation model using stepwise transfer learning. Materials and Methods In this retrospective study, the authors leveraged two T2-weighted MRI datasets (May 2001 through December 2015) from a national brain tumor consortium (<i>n</i> = 184; median age, 7 years [range, 1-23 years]; 94 male patients) and a pediatric cancer center (<i>n</i> = 100; median age, 8 years [range, 1-19 years]; 47 male patients) to develop and evaluate deep learning neural networks for pediatric low-grade glioma segmentation using a stepwise transfer learning approach to maximize performance in a limited data scenario. The best model was externally tested on an independent test set and subjected to randomized blinded evaluation by three clinicians, wherein they assessed clinical acceptability of expert- and artificial intelligence (AI)-generated segmentations via 10-point Likert scales and Turing tests. Results The best AI model used in-domain stepwise transfer learning (median Dice score coefficient, 0.88 [IQR, 0.72-0.91] vs 0.812 [IQR, 0.56-0.89] for baseline model; <i>P</i> = .049). With external testing, the AI model yielded excellent accuracy using reference standards from three clinical experts (median Dice similarity coefficients: expert 1, 0.83 [IQR, 0.75-0.90]; expert 2, 0.81 [IQR, 0.70-0.89]; expert 3, 0.81 [IQR, 0.68-0.88]; mean accuracy, 0.82). For clinical benchmarking (<i>n</i> = 100 scans), experts rated AI-based segmentations higher on average compared with other experts (median Likert score, 9 [IQR, 7-9] vs 7 [IQR 7-9]) and rated more AI segmentations as clinically acceptable (80.2% vs 65.4%). Experts correctly predicted the origin of AI segmentations in an average of 26.0% of cases. Conclusion Stepwise transfer learning enabled expert-level automated pediatric brain tumor autosegmentation and volumetric measurement with a high level of clinical acceptability. <b>Keywords:</b> Stepwise Transfer Learning, Pediatric Brain Tumors, MRI Segmentation, Deep Learning <i>Supplemental material is available for this article</i>. © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.230254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
Purpose To develop, externally test, and evaluate clinical acceptability of a deep learning pediatric brain tumor segmentation model using stepwise transfer learning. Materials and Methods In this retrospective study, the authors leveraged two T2-weighted MRI datasets (May 2001 through December 2015) from a national brain tumor consortium (n = 184; median age, 7 years [range, 1-23 years]; 94 male patients) and a pediatric cancer center (n = 100; median age, 8 years [range, 1-19 years]; 47 male patients) to develop and evaluate deep learning neural networks for pediatric low-grade glioma segmentation using a stepwise transfer learning approach to maximize performance in a limited data scenario. The best model was externally tested on an independent test set and subjected to randomized blinded evaluation by three clinicians, wherein they assessed clinical acceptability of expert- and artificial intelligence (AI)-generated segmentations via 10-point Likert scales and Turing tests. Results The best AI model used in-domain stepwise transfer learning (median Dice score coefficient, 0.88 [IQR, 0.72-0.91] vs 0.812 [IQR, 0.56-0.89] for baseline model; P = .049). With external testing, the AI model yielded excellent accuracy using reference standards from three clinical experts (median Dice similarity coefficients: expert 1, 0.83 [IQR, 0.75-0.90]; expert 2, 0.81 [IQR, 0.70-0.89]; expert 3, 0.81 [IQR, 0.68-0.88]; mean accuracy, 0.82). For clinical benchmarking (n = 100 scans), experts rated AI-based segmentations higher on average compared with other experts (median Likert score, 9 [IQR, 7-9] vs 7 [IQR 7-9]) and rated more AI segmentations as clinically acceptable (80.2% vs 65.4%). Experts correctly predicted the origin of AI segmentations in an average of 26.0% of cases. Conclusion Stepwise transfer learning enabled expert-level automated pediatric brain tumor autosegmentation and volumetric measurement with a high level of clinical acceptability. Keywords: Stepwise Transfer Learning, Pediatric Brain Tumors, MRI Segmentation, Deep Learning Supplemental material is available for this article . © RSNA, 2024.
在数据有限的情况下,针对专家级小儿脑肿瘤磁共振成像分割的逐步迁移学习。
"刚刚接受 "的论文经过同行评审,已被接受在《放射学》上发表:人工智能》上发表。这篇文章在以最终版本发表之前,还将经过校对、排版和校对审核。请注意,在制作最终校对稿的过程中,可能会发现影响内容的错误。目的 开发、外部测试和评估使用逐步转移学习的深度学习(DL)儿科脑肿瘤分割模型的临床可接受性。材料与方法 在这项回顾性研究中,作者利用两个 T2 加权磁共振成像数据集(2001 年 5 月至 2015 年 12 月),分别来自一个国家脑肿瘤联盟(n = 184;中位年龄 7 岁(范围:1-23 岁);94 名男性)和一个儿科癌症中心(n = 100;中位年龄 8 岁(范围:1-19 岁);47 名男性),开发并评估了用于儿科低级别胶质瘤分割的 DL 神经网络,采用了一种新颖的逐步转移学习方法,以在有限的数据场景中实现性能最大化。最佳模型在独立测试集上进行了外部测试,并由三位临床医生进行了随机、盲测评估,他们通过 10 分李克特量表和图灵测试评估了专家和人工智能(AI)生成的分割结果的临床可接受性。结果 最佳人工智能模型采用了域内逐步转移学习(DSC 中位数:0.88 [IQR 0.72-0.91] 而基线模型为 0.812 [0.56-0.89];P = .049)。在外部测试中,人工智能模型使用三位临床专家提供的参考标准(专家-1:0.83 [0.75-0.90];专家-2:0.81 [0.70-0.89];专家-3:0.81 [0.68-0.88];平均准确度:0.82))获得了极高的准确度。在临床基准测试(n = 100 次扫描)中,专家对基于人工智能的分割的平均评分高于其他专家(Likert 评分中位数:中位数 9 [IQR 7-9]) 对 7 [IQR 7-9]),并将更多人工智能分割评为临床可接受(80.2% 对 65.4%)。专家平均在 26.0% 的病例中正确预测了人工智能分割的起源。结论 逐步迁移学习实现了专家级的自动化小儿脑肿瘤自动分割和体积测量,并具有较高的临床可接受性。©RSNA, 2024.
本文章由计算机程序翻译,如有差异,请以英文原文为准。