Developing a deep learning model for predicting ovarian cancer in Ovarian-Adnexal Reporting and Data System Ultrasound (O-RADS US) Category 4 lesions: A multicenter study.
{"title":"Developing a deep learning model for predicting ovarian cancer in Ovarian-Adnexal Reporting and Data System Ultrasound (O-RADS US) Category 4 lesions: A multicenter study.","authors":"Wenting Xie, Wenjie Lin, Ping Li, Hongwei Lai, Zhilan Wang, Peizhong Liu, Yijun Huang, Yao Liu, Lina Tang, Guorong Lyu","doi":"10.1007/s00432-024-05872-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop a deep learning (DL) model for differentiating between benign and malignant ovarian tumors of Ovarian-Adnexal Reporting and Data System Ultrasound (O-RADS US) Category 4 lesions, and validate its diagnostic performance.</p><p><strong>Methods: </strong>A retrospective analysis of 1619 US images obtained from three centers from December 2014 to March 2023. DeepLabV3 and YOLOv8 were jointly used to segment, classify, and detect ovarian tumors. Precision and recall and area under the receiver operating characteristic curve (AUC) were employed to assess the model performance.</p><p><strong>Results: </strong>A total of 519 patients (including 269 benign and 250 malignant masses) were enrolled in the study. The number of women included in the training, validation, and test cohorts was 426, 46, and 47, respectively. The detection models exhibited an average precision of 98.68% (95% CI: 0.95-0.99) for benign masses and 96.23% (95% CI: 0.92-0.98) for malignant masses. Moreover, in the training set, the AUC was 0.96 (95% CI: 0.94-0.97), whereas in the validation set, the AUC was 0.93(95% CI: 0.89-0.94) and 0.95 (95% CI: 0.91-0.96) in the test set. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive values for the training set were 0.943,0.957,0.951,0.966, and 0.936, respectively, whereas those for the validation set were 0.905,0.935, 0.935,0.919, and 0.931, respectively. In addition, the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the test set were 0.925, 0.955, 0.941, 0.956, and 0.927, respectively.</p><p><strong>Conclusion: </strong>The constructed DL model exhibited high diagnostic performance in distinguishing benign and malignant ovarian tumors in O-RADS US category 4 lesions.</p>","PeriodicalId":15118,"journal":{"name":"Journal of Cancer Research and Clinical Oncology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233367/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Research and Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00432-024-05872-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To develop a deep learning (DL) model for differentiating between benign and malignant ovarian tumors of Ovarian-Adnexal Reporting and Data System Ultrasound (O-RADS US) Category 4 lesions, and validate its diagnostic performance.
Methods: A retrospective analysis of 1619 US images obtained from three centers from December 2014 to March 2023. DeepLabV3 and YOLOv8 were jointly used to segment, classify, and detect ovarian tumors. Precision and recall and area under the receiver operating characteristic curve (AUC) were employed to assess the model performance.
Results: A total of 519 patients (including 269 benign and 250 malignant masses) were enrolled in the study. The number of women included in the training, validation, and test cohorts was 426, 46, and 47, respectively. The detection models exhibited an average precision of 98.68% (95% CI: 0.95-0.99) for benign masses and 96.23% (95% CI: 0.92-0.98) for malignant masses. Moreover, in the training set, the AUC was 0.96 (95% CI: 0.94-0.97), whereas in the validation set, the AUC was 0.93(95% CI: 0.89-0.94) and 0.95 (95% CI: 0.91-0.96) in the test set. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive values for the training set were 0.943,0.957,0.951,0.966, and 0.936, respectively, whereas those for the validation set were 0.905,0.935, 0.935,0.919, and 0.931, respectively. In addition, the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the test set were 0.925, 0.955, 0.941, 0.956, and 0.927, respectively.
Conclusion: The constructed DL model exhibited high diagnostic performance in distinguishing benign and malignant ovarian tumors in O-RADS US category 4 lesions.
期刊介绍:
The "Journal of Cancer Research and Clinical Oncology" publishes significant and up-to-date articles within the fields of experimental and clinical oncology. The journal, which is chiefly devoted to Original papers, also includes Reviews as well as Editorials and Guest editorials on current, controversial topics. The section Letters to the editors provides a forum for a rapid exchange of comments and information concerning previously published papers and topics of current interest. Meeting reports provide current information on the latest results presented at important congresses.
The following fields are covered: carcinogenesis - etiology, mechanisms; molecular biology; recent developments in tumor therapy; general diagnosis; laboratory diagnosis; diagnostic and experimental pathology; oncologic surgery; and epidemiology.