The role of biomarkers and dosimetry parameters in overall and progression free survival prediction for patients treated with personalized 90Y glass microspheres SIRT: a preliminary machine learning study.
IF 8.6 1区 医学Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Zahra Mansouri, Yazdan Salimi, Ghasem Hajianfar, Nicola Bianchetto Wolf, Luisa Knappe, Genti Xhepa, Adrien Gleyzolle, Alexis Ricoeur, Valentina Garibotto, Ismini Mainta, Habib Zaidi
{"title":"The role of biomarkers and dosimetry parameters in overall and progression free survival prediction for patients treated with personalized <sup>90</sup>Y glass microspheres SIRT: a preliminary machine learning study.","authors":"Zahra Mansouri, Yazdan Salimi, Ghasem Hajianfar, Nicola Bianchetto Wolf, Luisa Knappe, Genti Xhepa, Adrien Gleyzolle, Alexis Ricoeur, Valentina Garibotto, Ismini Mainta, Habib Zaidi","doi":"10.1007/s00259-024-06805-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Overall Survival (OS) and Progression-Free Survival (PFS) analyses are crucial metrics for evaluating the efficacy and impact of treatment. This study evaluated the role of clinical biomarkers and dosimetry parameters on survival outcomes of patients undergoing <sup>90</sup>Y selective internal radiation therapy (SIRT).</p><p><strong>Materials/methods: </strong>This preliminary and retrospective analysis included 17 patients with hepatocellular carcinoma (HCC) treated with <sup>90</sup>Y SIRT. The patients underwent personalized treatment planning and voxel-wise dosimetry. After the procedure, the OS and PFS were evaluated. Three structures were delineated including tumoral liver (TL), normal perfused liver (NPL), and whole normal liver (WNL). 289 dose-volume constraints (DVCs) were extracted from dose-volume histograms of physical and biological effective dose (BED) maps calculated on <sup>99m</sup>Tc-MAA and <sup>90</sup>Y SPECT/CT images. Subsequently, the DVCs and 16 clinical biomarkers were used as features for univariate and multivariate analysis. Cox proportional hazard ratio (HR) was employed for univariate analysis. HR and the concordance index (C-Index) were calculated for each feature. Using eight different strategies, a cross-combination of various models and feature selection (FS) methods was applied for multivariate analysis. The performance of each model was assessed using an averaged C-Index on a three-fold nested cross-validation framework. The Kaplan-Meier (KM) curve was employed for univariate and machine learning (ML) model performance assessment.</p><p><strong>Results: </strong>The median OS was 11 months [95% CI: 8.5, 13.09], whereas the PFS was seven months [95% CI: 5.6, 10.98]. Univariate analysis demonstrated the presence of Ascites (HR: 9.2[1.8,47]) and the aim of SIRT (segmentectomy, lobectomy, palliative) (HR: 0.066 [0.0057, 0.78]), Aspartate aminotransferase (AST) level (HR:0.1 [0.012-0.86]), and MAA-Dose-V<sub>205</sub>(%)-TL (HR:8.5[1,72]) as predictors for OS. <sup>90</sup>Y-derived parameters were associated with PFS but not with OS. MAA-Dose-V<sub>205</sub>(%)-WNL, MAA-BED-V<sub>400</sub>(%)-WNL with (HR:13 [1.5-120]) and <sup>90</sup>Y-Dose-mean-TL, <sup>90</sup>Y-D<sub>50</sub>-TL-Gy, <sup>90</sup>Y-Dose-V<sub>205</sub>(%)-TL, <sup>90</sup>Y-Dose- D<sub>50</sub>-TL-Gy, and <sup>90</sup>Y-BED-V<sub>400</sub>(%)-TL (HR:15 [1.8-120]) were highly associated with PFS among dosimetry parameters. The highest C-index observed in multivariate analysis using ML was 0.94 ± 0.13 obtained from Variable Hunting-variable-importance (VH.VIMP) FS and Cox Proportional Hazard model predicting OS, using clinical features. However, the combination of VH. VIMP FS method with a Generalized Linear Model Network model predicting OS using Therapy strategy features outperformed the other models in terms of both C-index and stratification of KM curves (C-Index: 0.93 ± 0.14 and log-rank p-value of 0.023 for KM curve stratification).</p><p><strong>Conclusion: </strong>This preliminary study confirmed the role played by baseline clinical biomarkers and dosimetry parameters in predicting the treatment outcome, paving the way for the establishment of a dose-effect relationship. In addition, the feasibility of using ML along with these features was demonstrated as a helpful tool in the clinical management of patients, both prior to and following <sup>90</sup>Y-SIRT.</p>","PeriodicalId":11909,"journal":{"name":"European Journal of Nuclear Medicine and Molecular Imaging","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nuclear Medicine and Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00259-024-06805-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Overall Survival (OS) and Progression-Free Survival (PFS) analyses are crucial metrics for evaluating the efficacy and impact of treatment. This study evaluated the role of clinical biomarkers and dosimetry parameters on survival outcomes of patients undergoing 90Y selective internal radiation therapy (SIRT).
Materials/methods: This preliminary and retrospective analysis included 17 patients with hepatocellular carcinoma (HCC) treated with 90Y SIRT. The patients underwent personalized treatment planning and voxel-wise dosimetry. After the procedure, the OS and PFS were evaluated. Three structures were delineated including tumoral liver (TL), normal perfused liver (NPL), and whole normal liver (WNL). 289 dose-volume constraints (DVCs) were extracted from dose-volume histograms of physical and biological effective dose (BED) maps calculated on 99mTc-MAA and 90Y SPECT/CT images. Subsequently, the DVCs and 16 clinical biomarkers were used as features for univariate and multivariate analysis. Cox proportional hazard ratio (HR) was employed for univariate analysis. HR and the concordance index (C-Index) were calculated for each feature. Using eight different strategies, a cross-combination of various models and feature selection (FS) methods was applied for multivariate analysis. The performance of each model was assessed using an averaged C-Index on a three-fold nested cross-validation framework. The Kaplan-Meier (KM) curve was employed for univariate and machine learning (ML) model performance assessment.
Results: The median OS was 11 months [95% CI: 8.5, 13.09], whereas the PFS was seven months [95% CI: 5.6, 10.98]. Univariate analysis demonstrated the presence of Ascites (HR: 9.2[1.8,47]) and the aim of SIRT (segmentectomy, lobectomy, palliative) (HR: 0.066 [0.0057, 0.78]), Aspartate aminotransferase (AST) level (HR:0.1 [0.012-0.86]), and MAA-Dose-V205(%)-TL (HR:8.5[1,72]) as predictors for OS. 90Y-derived parameters were associated with PFS but not with OS. MAA-Dose-V205(%)-WNL, MAA-BED-V400(%)-WNL with (HR:13 [1.5-120]) and 90Y-Dose-mean-TL, 90Y-D50-TL-Gy, 90Y-Dose-V205(%)-TL, 90Y-Dose- D50-TL-Gy, and 90Y-BED-V400(%)-TL (HR:15 [1.8-120]) were highly associated with PFS among dosimetry parameters. The highest C-index observed in multivariate analysis using ML was 0.94 ± 0.13 obtained from Variable Hunting-variable-importance (VH.VIMP) FS and Cox Proportional Hazard model predicting OS, using clinical features. However, the combination of VH. VIMP FS method with a Generalized Linear Model Network model predicting OS using Therapy strategy features outperformed the other models in terms of both C-index and stratification of KM curves (C-Index: 0.93 ± 0.14 and log-rank p-value of 0.023 for KM curve stratification).
Conclusion: This preliminary study confirmed the role played by baseline clinical biomarkers and dosimetry parameters in predicting the treatment outcome, paving the way for the establishment of a dose-effect relationship. In addition, the feasibility of using ML along with these features was demonstrated as a helpful tool in the clinical management of patients, both prior to and following 90Y-SIRT.
期刊介绍:
The European Journal of Nuclear Medicine and Molecular Imaging serves as a platform for the exchange of clinical and scientific information within nuclear medicine and related professions. It welcomes international submissions from professionals involved in the functional, metabolic, and molecular investigation of diseases. The journal's coverage spans physics, dosimetry, radiation biology, radiochemistry, and pharmacy, providing high-quality peer review by experts in the field. Known for highly cited and downloaded articles, it ensures global visibility for research work and is part of the EJNMMI journal family.