Study on Pharmacological Activities and Mechanisms of the Essential Oil of the Flowers of Hemerocallis citrina Baroni (EOFHCB) in the Treatment of Anxiety Disorders by GC-MS, Network Pharmacology, and Molecular Docking.
Tao Lu, Ziyi Liu, Huaxiang Zhao, Xuan Zhou, Qiong Wang, Xiaoning Jiao, Zhen Lu
{"title":"Study on Pharmacological Activities and Mechanisms of the Essential Oil of the Flowers of Hemerocallis citrina Baroni (EOFHCB) in the Treatment of Anxiety Disorders by GC-MS, Network Pharmacology, and Molecular Docking.","authors":"Tao Lu, Ziyi Liu, Huaxiang Zhao, Xuan Zhou, Qiong Wang, Xiaoning Jiao, Zhen Lu","doi":"10.2174/0113862073309835240611075049","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hemerocallis citrina Baroni (Huanghuacai), a plant of the genus Hemerocallis in the family Asphodelaceae, is widely planted in China. Based on our survey results, the chemical compounds in the essential oil of the flowers of Hemerocallis citrina Baroni (EOFHCB) and relevant pharmacological activities have never been studied systematically.</p><p><strong>Objective: </strong>To preliminarily decipher the pharmacological activities and mechanisms of EOFHCB in the treatment of anxiety disorders by GC-MS, Network Pharmacology, and Molecular docking.</p><p><strong>Methods: </strong>EOFHCB compositions were identified using GC-MS, and their targets were predicted using Swiss Target Prediction databases. The targets of anxiety disorders were obtained by GeneCards, DisGeNET, and OMIM databases. The STRING database was used to construct the protein-protein interaction networks, and the DAVID database was used to carry out GO enrichment and KEGG pathway enrichment analysis. The EOFHCB-components-targetspathways- anxiety disorders network was constructed by Cytoscape software (Version 3.10.0). Finally, the result was verified by molecular docking.</p><p><strong>Results: </strong>28 chemical components were identified by GC-MS, including 3-furanmethanol (28.43%), 2-methyl-1-butanol (27.13%), nerolidol (10.62%), and so on, which correspond to 241 potential targets. Several 2440 biological processes, 187 cellular compositions, and 311 molecular functions were enriched by GO enrichment analysis and 174 pathways by KEGG enrichment analysis. The key targets are PTGS 2, SRC, DRD 2, ESR 1, MAOB, and SLC6A4. The most important pathway is the neuroactive ligand-receptor interaction.</p><p><strong>Conclusion: </strong>EOFHCB exerts its therapeutic effects on anxiety disorders through multicomponents, multi-targets, and multi-pathways, which provided new ideas and methods for the in-depth research of aromatic Chinese medicine in the treatment of anxiety disorders.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073309835240611075049","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hemerocallis citrina Baroni (Huanghuacai), a plant of the genus Hemerocallis in the family Asphodelaceae, is widely planted in China. Based on our survey results, the chemical compounds in the essential oil of the flowers of Hemerocallis citrina Baroni (EOFHCB) and relevant pharmacological activities have never been studied systematically.
Objective: To preliminarily decipher the pharmacological activities and mechanisms of EOFHCB in the treatment of anxiety disorders by GC-MS, Network Pharmacology, and Molecular docking.
Methods: EOFHCB compositions were identified using GC-MS, and their targets were predicted using Swiss Target Prediction databases. The targets of anxiety disorders were obtained by GeneCards, DisGeNET, and OMIM databases. The STRING database was used to construct the protein-protein interaction networks, and the DAVID database was used to carry out GO enrichment and KEGG pathway enrichment analysis. The EOFHCB-components-targetspathways- anxiety disorders network was constructed by Cytoscape software (Version 3.10.0). Finally, the result was verified by molecular docking.
Results: 28 chemical components were identified by GC-MS, including 3-furanmethanol (28.43%), 2-methyl-1-butanol (27.13%), nerolidol (10.62%), and so on, which correspond to 241 potential targets. Several 2440 biological processes, 187 cellular compositions, and 311 molecular functions were enriched by GO enrichment analysis and 174 pathways by KEGG enrichment analysis. The key targets are PTGS 2, SRC, DRD 2, ESR 1, MAOB, and SLC6A4. The most important pathway is the neuroactive ligand-receptor interaction.
Conclusion: EOFHCB exerts its therapeutic effects on anxiety disorders through multicomponents, multi-targets, and multi-pathways, which provided new ideas and methods for the in-depth research of aromatic Chinese medicine in the treatment of anxiety disorders.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.