Anti-virus activity and mechanisms of natural polysaccharides from medicinal herbs

IF 2.4 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiaoyan Huang, Xingyin Chen, Yuanhua Xian, Faming Jiang
{"title":"Anti-virus activity and mechanisms of natural polysaccharides from medicinal herbs","authors":"Xiaoyan Huang,&nbsp;Xingyin Chen,&nbsp;Yuanhua Xian,&nbsp;Faming Jiang","doi":"10.1016/j.carres.2024.109205","DOIUrl":null,"url":null,"abstract":"<div><p>There has been a sudden increase in viral diseases, such as coronavirus disease 2019 (COVID-19), causing significant harm to human and animal well-being, as well as economic development. Medicinal herbs, with a history of thousands of years in clinical use, contain versatile polysaccharides as one of their primary compounds. This review offers an overview of the antiviral effects of polysaccharides from medicinal herbs on viruses in humans, poultry, swine and aquaculture in recent years. The mechanism of these antiviral polysaccharides, involved in hindering various stages of the viral life cycle thereby blocking virus infection, is summarized. The review also explores other underlying mechanisms of antiviral effects, such as enhancing the immune response, regulating inflammatory reactions, balancing gut flora, reducing oxidative stress, and suppressing apoptosis through various corresponding signaling pathways. The structure-function relationships discussed in this article also aid in understanding the antiviral mechanism of natural polysaccharides, indicating the need for more in-depth research and analysis. Natural polysaccharides from medicinal herbs have emerged as valuable resources in the fight against viral infections, exhibiting high effectiveness. This review emphasizes the promising role of polysaccharides from medicinal herbs as potential candidates for blocking viral infections in humans and animals.</p></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"542 ","pages":"Article 109205"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008621524001848","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

There has been a sudden increase in viral diseases, such as coronavirus disease 2019 (COVID-19), causing significant harm to human and animal well-being, as well as economic development. Medicinal herbs, with a history of thousands of years in clinical use, contain versatile polysaccharides as one of their primary compounds. This review offers an overview of the antiviral effects of polysaccharides from medicinal herbs on viruses in humans, poultry, swine and aquaculture in recent years. The mechanism of these antiviral polysaccharides, involved in hindering various stages of the viral life cycle thereby blocking virus infection, is summarized. The review also explores other underlying mechanisms of antiviral effects, such as enhancing the immune response, regulating inflammatory reactions, balancing gut flora, reducing oxidative stress, and suppressing apoptosis through various corresponding signaling pathways. The structure-function relationships discussed in this article also aid in understanding the antiviral mechanism of natural polysaccharides, indicating the need for more in-depth research and analysis. Natural polysaccharides from medicinal herbs have emerged as valuable resources in the fight against viral infections, exhibiting high effectiveness. This review emphasizes the promising role of polysaccharides from medicinal herbs as potential candidates for blocking viral infections in humans and animals.

Abstract Image

药材中天然多糖的抗病毒活性和机制。
病毒性疾病突然增多,如 2019 年冠状病毒病(COVID-19),对人类和动物的福祉以及经济发展造成了重大危害。具有数千年临床应用历史的药用草本植物,其主要化合物之一含有多功能多糖。本综述概述了近年来药材多糖对人类、家禽、猪和水产养殖中病毒的抗病毒作用。综述了这些抗病毒多糖阻碍病毒生命周期各个阶段从而阻断病毒感染的机制。综述还探讨了抗病毒作用的其他潜在机制,如通过各种相应的信号通路增强免疫反应、调节炎症反应、平衡肠道菌群、减少氧化应激和抑制细胞凋亡。本文所讨论的结构-功能关系也有助于理解天然多糖的抗病毒机制,表明有必要进行更深入的研究和分析。药材中的天然多糖已成为抗病毒感染的宝贵资源,表现出很高的有效性。本综述强调了药材多糖作为阻断人类和动物病毒感染的潜在候选物质所具有的广阔前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Research
Carbohydrate Research 化学-生化与分子生物学
CiteScore
5.00
自引率
3.20%
发文量
183
审稿时长
3.6 weeks
期刊介绍: Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects. Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence. Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信