Jiaqi Wang, Yijia Cao, Mo Sun, Tonghua Zhang, Gengyuan Yu, Haoran Xu, Tianyi Li, Chenning Zhang, Yikun Sun
{"title":"Integrating metabolomics and bioinformatics to reveal the mechanism of Epimedium-induced liver injury","authors":"Jiaqi Wang, Yijia Cao, Mo Sun, Tonghua Zhang, Gengyuan Yu, Haoran Xu, Tianyi Li, Chenning Zhang, Yikun Sun","doi":"10.1002/bmc.5948","DOIUrl":null,"url":null,"abstract":"<p>Epimedium is a traditional Chinese medicine with a wide range of clinical applications; however, there have been numerous reports of adverse reactions in recent years. The most common side effect of Epimedium is liver injury. In this study, the liquid chromatography–mass spectrometry (LC–MS) method has been established to study the components of Epimedium and to identify the components absorbed into the blood of rats. Bioinformatics was used to screen out potential toxic components, and the integrating metabolomics method was used to explore the molecular mechanism of Epimedium-induced liver injury. The chemical constituents of Epimedium were identified by LC–MS, and 62 compounds were obtained, including 57 flavonoids, four organic acids and one alkaloid. The toxicity network of “Epimedium–component–target–liver injury” was constructed using bioinformatics research methods, and then the key hepatotoxic component icaritin was identified. Integrating metabolomics was used to investigate the changes in the metabolic profile of L-02 cells with different durations of icaritin administration compared with the control group, and 106 different metabolites were obtained. A total of 14 potential biomarkers significantly associated with cell survival were screened by Pearson correlation analysis combined with the L-02 cell survival rate. Our study preliminarily revealed the mechanism of hepatotoxicity induced by Epimedium.</p>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"38 9","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmc.5948","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Epimedium is a traditional Chinese medicine with a wide range of clinical applications; however, there have been numerous reports of adverse reactions in recent years. The most common side effect of Epimedium is liver injury. In this study, the liquid chromatography–mass spectrometry (LC–MS) method has been established to study the components of Epimedium and to identify the components absorbed into the blood of rats. Bioinformatics was used to screen out potential toxic components, and the integrating metabolomics method was used to explore the molecular mechanism of Epimedium-induced liver injury. The chemical constituents of Epimedium were identified by LC–MS, and 62 compounds were obtained, including 57 flavonoids, four organic acids and one alkaloid. The toxicity network of “Epimedium–component–target–liver injury” was constructed using bioinformatics research methods, and then the key hepatotoxic component icaritin was identified. Integrating metabolomics was used to investigate the changes in the metabolic profile of L-02 cells with different durations of icaritin administration compared with the control group, and 106 different metabolites were obtained. A total of 14 potential biomarkers significantly associated with cell survival were screened by Pearson correlation analysis combined with the L-02 cell survival rate. Our study preliminarily revealed the mechanism of hepatotoxicity induced by Epimedium.
期刊介绍:
Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.