{"title":"Investigation of an Optimal Sampling Resolution to Support Soil Management Decisions for Urban Plots","authors":"Hayley Clos, Marisa Chrysochoou","doi":"10.1007/s00267-024-02012-1","DOIUrl":null,"url":null,"abstract":"<div><p>The main objective of the current study was to use seven lots in Hartford, CT that are planned for community reuse to determine the optimal sampling density that allows for the detection of hotspots of lead pollution while limiting the labor of the sampling process. The sampling density was investigated using soil Pb measured by in situ X-ray Fluorescence as the indicator to evaluate soil health, with a new threshold of 200-mg/kg proposed by the USEPA in January of 2024. Even though this study takes place in an urban setting, where the new USEPA policy requires the use of a 100-mg/kg threshold for Pb due to the fact that there are other identifiable sources of the contaminant, only the 200-mg/kg threshold is discussed because it is evident from the analysis that compliance of a 100 mg/kg threshold in urban plots is highly unlikely (five out of seven sites would require complete site excavation prior to reuse). Using the inverse distance weighted geospatial interpolation of in situ pXRF determined lead measurements, grid sampling resolutions of 3-m, 4-m, 5-m, 6-m, 8-m, 10-m, and 12-m were compared. Ultimately, the case study finds that the largest grid resolution that can be implemented for soil screening to maintain hotspots of pollution to properly inform soil management decisions is a 6-m grid, or a density of approximately 1/36-m<sup>2</sup>.</p></div>","PeriodicalId":543,"journal":{"name":"Environmental Management","volume":"74 5","pages":"958 - 969"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00267-024-02012-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The main objective of the current study was to use seven lots in Hartford, CT that are planned for community reuse to determine the optimal sampling density that allows for the detection of hotspots of lead pollution while limiting the labor of the sampling process. The sampling density was investigated using soil Pb measured by in situ X-ray Fluorescence as the indicator to evaluate soil health, with a new threshold of 200-mg/kg proposed by the USEPA in January of 2024. Even though this study takes place in an urban setting, where the new USEPA policy requires the use of a 100-mg/kg threshold for Pb due to the fact that there are other identifiable sources of the contaminant, only the 200-mg/kg threshold is discussed because it is evident from the analysis that compliance of a 100 mg/kg threshold in urban plots is highly unlikely (five out of seven sites would require complete site excavation prior to reuse). Using the inverse distance weighted geospatial interpolation of in situ pXRF determined lead measurements, grid sampling resolutions of 3-m, 4-m, 5-m, 6-m, 8-m, 10-m, and 12-m were compared. Ultimately, the case study finds that the largest grid resolution that can be implemented for soil screening to maintain hotspots of pollution to properly inform soil management decisions is a 6-m grid, or a density of approximately 1/36-m2.
期刊介绍:
Environmental Management offers research and opinions on use and conservation of natural resources, protection of habitats and control of hazards, spanning the field of environmental management without regard to traditional disciplinary boundaries. The journal aims to improve communication, making ideas and results from any field available to practitioners from other backgrounds. Contributions are drawn from biology, botany, chemistry, climatology, ecology, ecological economics, environmental engineering, fisheries, environmental law, forest sciences, geosciences, information science, public affairs, public health, toxicology, zoology and more.
As the principal user of nature, humanity is responsible for ensuring that its environmental impacts are benign rather than catastrophic. Environmental Management presents the work of academic researchers and professionals outside universities, including those in business, government, research establishments, and public interest groups, presenting a wide spectrum of viewpoints and approaches.