Sustaining Surface Lithiophilicity of Ultrathin Li-Alloy Coating Layers on Current Collector for Zero-Excess Li-Metal Batteries

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-07-10 DOI:10.1002/smll.202402988
Jiyeon Seo, Jihye Lim, Hongjun Chang, Jiwon Lee, Jiyun Woo, Injun Jung, Yechan Kim, Beomjun Kim, Janghyuk Moon, Hongkyung Lee
{"title":"Sustaining Surface Lithiophilicity of Ultrathin Li-Alloy Coating Layers on Current Collector for Zero-Excess Li-Metal Batteries","authors":"Jiyeon Seo,&nbsp;Jihye Lim,&nbsp;Hongjun Chang,&nbsp;Jiwon Lee,&nbsp;Jiyun Woo,&nbsp;Injun Jung,&nbsp;Yechan Kim,&nbsp;Beomjun Kim,&nbsp;Janghyuk Moon,&nbsp;Hongkyung Lee","doi":"10.1002/smll.202402988","DOIUrl":null,"url":null,"abstract":"<p>Zero-excess Li-metal batteries (ZE-LMBs) have emerged as the ultimate battery platform, offering an exceptionally high energy density. However, the absence of Li-hosting materials results in uncontrolled dendritic Li deposition on the Cu current collector, leading to chronic loss of Li inventory and severe electrolyte decomposition, limiting its full utilization upon cycling. This study presents the application of ultrathin (≈50 nm) coatings comprising six metallic layers (Cu, Ag, Au, Pt, W, and Fe) on Cu substrates in order to provide insights into the design of Li-depositing current collectors for stable ZE-LMB operation. In contrast to non-alloy Cu, W, and Fe coatings, Ag, Au, and Pt coatings can enhance surface lithiophilicity, effectively suppressing Li dendrite growth, thereby improving Li reversibility. Considering the distinct Li-alloying behaviors, particularly solid-solution and/or intermetallic phase formation, Pt-coated Cu current collectors maintain surface lithiophilicity over repeated Li plating/stripping cycles by preserving the original coating layer, thereby attaining better cycling performance of ZE-LMBs. This highlights the importance of selecting suitable Li-alloy metals to sustain surface lithiophilicity throughout cycling to regulate dendrite-less Li plating and improve the electrochemical stability of ZE-LMBs.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"20 47","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202402988","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zero-excess Li-metal batteries (ZE-LMBs) have emerged as the ultimate battery platform, offering an exceptionally high energy density. However, the absence of Li-hosting materials results in uncontrolled dendritic Li deposition on the Cu current collector, leading to chronic loss of Li inventory and severe electrolyte decomposition, limiting its full utilization upon cycling. This study presents the application of ultrathin (≈50 nm) coatings comprising six metallic layers (Cu, Ag, Au, Pt, W, and Fe) on Cu substrates in order to provide insights into the design of Li-depositing current collectors for stable ZE-LMB operation. In contrast to non-alloy Cu, W, and Fe coatings, Ag, Au, and Pt coatings can enhance surface lithiophilicity, effectively suppressing Li dendrite growth, thereby improving Li reversibility. Considering the distinct Li-alloying behaviors, particularly solid-solution and/or intermetallic phase formation, Pt-coated Cu current collectors maintain surface lithiophilicity over repeated Li plating/stripping cycles by preserving the original coating layer, thereby attaining better cycling performance of ZE-LMBs. This highlights the importance of selecting suitable Li-alloy metals to sustain surface lithiophilicity throughout cycling to regulate dendrite-less Li plating and improve the electrochemical stability of ZE-LMBs.

Abstract Image

维持集流体上超薄锂合金涂层的表面亲锂性,实现零损耗锂金属电池。
零过量锂金属电池(ZE-LMB)已成为终极电池平台,可提供极高的能量密度。然而,由于缺乏锂金属寄主材料,锂金属会不受控制地沉积在铜集流器上,导致锂金属库存长期流失和严重的电解质分解,从而限制了电池在循环过程中的充分利用。本研究介绍了由六种金属层(铜、银、金、铂、钨和铁)组成的超薄(≈50 nm)涂层在铜基底上的应用,以便为设计稳定运行 ZE-LMB 的锂沉积集流器提供启示。与非合金铜、钨和铁镀层相比,银、金和铂镀层可以增强表面亲锂性,有效抑制锂枝晶的生长,从而提高锂的可逆性。考虑到不同的锂合金化行为,特别是固溶相和/或金属间相的形成,铂镀层的铜电流收集器通过保留原始镀层,在反复的锂镀层/剥离循环中保持表面亲锂性,从而实现 ZE-LMB 更好的循环性能。这凸显了选择合适的锂合金金属在整个循环过程中保持表面亲锂性的重要性,从而调节无枝晶锂镀层并提高 ZE-LMB 的电化学稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信