Connexin 30 locally controls actin cytoskeleton and mechanical remodeling in motile astrocytes

IF 5.4 2区 医学 Q1 NEUROSCIENCES
Glia Pub Date : 2024-07-09 DOI:10.1002/glia.24590
Grégory Ghézali, Jérôme Ribot, Nathan Curry, Laure-Elise Pillet, Flora Boutet-Porretta, Daria Mozheiko, Charles-Félix Calvo, Pascal Ezan, Isabelle Perfettini, Laure Lecoin, Sébastien Janel, Jonathan Zapata, Carole Escartin, Sandrine Etienne-Manneville, Clemens F. Kaminski, Nathalie Rouach
{"title":"Connexin 30 locally controls actin cytoskeleton and mechanical remodeling in motile astrocytes","authors":"Grégory Ghézali,&nbsp;Jérôme Ribot,&nbsp;Nathan Curry,&nbsp;Laure-Elise Pillet,&nbsp;Flora Boutet-Porretta,&nbsp;Daria Mozheiko,&nbsp;Charles-Félix Calvo,&nbsp;Pascal Ezan,&nbsp;Isabelle Perfettini,&nbsp;Laure Lecoin,&nbsp;Sébastien Janel,&nbsp;Jonathan Zapata,&nbsp;Carole Escartin,&nbsp;Sandrine Etienne-Manneville,&nbsp;Clemens F. Kaminski,&nbsp;Nathalie Rouach","doi":"10.1002/glia.24590","DOIUrl":null,"url":null,"abstract":"<p>During brain maturation, astrocytes establish complex morphologies unveiling intense structural plasticity. Connexin 30 (Cx30), a gap-junction channel-forming protein expressed postnatally, dynamically regulates during development astrocyte morphological properties by controlling ramification and extension of fine processes. However, the underlying mechanisms remain unexplored. Here, we found in vitro that Cx30 interacts with the actin cytoskeleton in astrocytes and inhibits its structural reorganization and dynamics during cell migration. This translates into an alteration of local physical surface properties, as assessed by correlative imaging using stimulated emission depletion (STED) super resolution imaging and atomic force microscopy (AFM). Specifically, Cx30 impaired astrocyte cell surface topology and cortical stiffness in motile astrocytes. As Cx30 alters actin organization, dynamics, and membrane physical properties, we assessed whether it controls astrocyte migration. We found that Cx30 reduced persistence and directionality of migrating astrocytes. Altogether, these data reveal Cx30 as a brake for astrocyte structural and mechanical plasticity.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 10","pages":"1915-1929"},"PeriodicalIF":5.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.24590","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/glia.24590","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

During brain maturation, astrocytes establish complex morphologies unveiling intense structural plasticity. Connexin 30 (Cx30), a gap-junction channel-forming protein expressed postnatally, dynamically regulates during development astrocyte morphological properties by controlling ramification and extension of fine processes. However, the underlying mechanisms remain unexplored. Here, we found in vitro that Cx30 interacts with the actin cytoskeleton in astrocytes and inhibits its structural reorganization and dynamics during cell migration. This translates into an alteration of local physical surface properties, as assessed by correlative imaging using stimulated emission depletion (STED) super resolution imaging and atomic force microscopy (AFM). Specifically, Cx30 impaired astrocyte cell surface topology and cortical stiffness in motile astrocytes. As Cx30 alters actin organization, dynamics, and membrane physical properties, we assessed whether it controls astrocyte migration. We found that Cx30 reduced persistence and directionality of migrating astrocytes. Altogether, these data reveal Cx30 as a brake for astrocyte structural and mechanical plasticity.

Abstract Image

连接蛋白 30 在运动的星形胶质细胞中局部控制肌动蛋白细胞骨架和机械重塑。
在大脑成熟过程中,星形胶质细胞会形成复杂的形态,显示出强烈的结构可塑性。Connexin30(Cx30)是一种在出生后表达的缝隙连接通道形成蛋白,它在发育过程中通过控制精细过程的分支和延伸来动态调节星形胶质细胞的形态特性。然而,其潜在机制仍有待探索。在这里,我们在体外发现 Cx30 与星形胶质细胞中的肌动蛋白细胞骨架相互作用,并在细胞迁移过程中抑制其结构重组和动态变化。这将转化为局部物理表面特性的改变,通过使用受激发射耗尽(STED)超分辨率成像和原子力显微镜(AFM)进行相关成像评估。具体来说,Cx30 损害了运动星形胶质细胞的细胞表面拓扑结构和皮质硬度。由于 Cx30 会改变肌动蛋白的组织、动力学和膜的物理特性,我们评估了它是否能控制星形胶质细胞的迁移。我们发现,Cx30 降低了迁移星形胶质细胞的持续性和方向性。总之,这些数据揭示了 Cx30 是星形胶质细胞结构和机械可塑性的制动器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Glia
Glia 医学-神经科学
CiteScore
13.10
自引率
4.80%
发文量
162
审稿时长
3-8 weeks
期刊介绍: GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信