Gold Nanodots-Anchored Cobalt Ferrite Nanoflowers as Versatile Tumor Microenvironment Modulators for Reinforced Redox Dyshomeostasis.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guicheng Zeng, Jinning Mao, Haiyan Xing, Zhigang Xu, Zhong Cao, Yuejun Kang, Guodong Liu, Peng Xue
{"title":"Gold Nanodots-Anchored Cobalt Ferrite Nanoflowers as Versatile Tumor Microenvironment Modulators for Reinforced Redox Dyshomeostasis.","authors":"Guicheng Zeng, Jinning Mao, Haiyan Xing, Zhigang Xu, Zhong Cao, Yuejun Kang, Guodong Liu, Peng Xue","doi":"10.1002/advs.202406683","DOIUrl":null,"url":null,"abstract":"<p><p>Given that tumor microenvironment (TME) exerts adverse impact on the therapeutic response and clinical outcome, robust TME modulators may significantly improve the curative effect and increase survival benefits of cancer patients. Here, Au nanodots-anchored CoFe<sub>2</sub>O<sub>4</sub> nanoflowers with PEGylation (CFAP) are developed to respond to TME cues, aiming to exacerbate redox dyshomeostasis for efficacious antineoplastic therapy under ultrasound (US) irradiation. After uptake by tumor cells, CFAP with glucose oxidase (GOx)-like activity can facilitate glucose depletion and promote the production of H<sub>2</sub>O<sub>2</sub>. Multivalent elements of Co(II)/Co(III) and Fe(II)/Fe(III) in CFAP display strong Fenton-like activity for·OH production from H<sub>2</sub>O<sub>2</sub>. On the other hand, energy band structure CFAP is superior for US-actuated <sup>1</sup>O<sub>2</sub> generation, relying on the enhanced separation and retarded recombination of e<sup>-</sup>/h<sup>+</sup> pairs. In addition, catalase-mimic CFAP can react with cytosolic H<sub>2</sub>O<sub>2</sub> to generate molecular oxygen, which may increase the product yields from O<sub>2</sub>-consuming reactions, such as glucose oxidation and sonosensitization processes. Besides the massive production of reactive oxygen species, CFAP is also capable of exhausting glutathione to devastate intracellular redox balance. Severe immunogenic cell death and effective inhibition of solid tumor by CFAP demonstrates the clinical potency of such heterogeneous structure and may inspire more relevant designs for disease therapy.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202406683","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Given that tumor microenvironment (TME) exerts adverse impact on the therapeutic response and clinical outcome, robust TME modulators may significantly improve the curative effect and increase survival benefits of cancer patients. Here, Au nanodots-anchored CoFe2O4 nanoflowers with PEGylation (CFAP) are developed to respond to TME cues, aiming to exacerbate redox dyshomeostasis for efficacious antineoplastic therapy under ultrasound (US) irradiation. After uptake by tumor cells, CFAP with glucose oxidase (GOx)-like activity can facilitate glucose depletion and promote the production of H2O2. Multivalent elements of Co(II)/Co(III) and Fe(II)/Fe(III) in CFAP display strong Fenton-like activity for·OH production from H2O2. On the other hand, energy band structure CFAP is superior for US-actuated 1O2 generation, relying on the enhanced separation and retarded recombination of e-/h+ pairs. In addition, catalase-mimic CFAP can react with cytosolic H2O2 to generate molecular oxygen, which may increase the product yields from O2-consuming reactions, such as glucose oxidation and sonosensitization processes. Besides the massive production of reactive oxygen species, CFAP is also capable of exhausting glutathione to devastate intracellular redox balance. Severe immunogenic cell death and effective inhibition of solid tumor by CFAP demonstrates the clinical potency of such heterogeneous structure and may inspire more relevant designs for disease therapy.

Abstract Image

金纳米点掺杂的钴铁氧体纳米流体作为强化氧化还原失衡的多功能肿瘤微环境调节剂
鉴于肿瘤微环境(TME)对治疗反应和临床结果产生不利影响,强有力的肿瘤微环境调节剂可显著改善癌症患者的疗效并提高其生存率。在此,研究人员开发了金纳米点锚定的聚乙二醇化 CoFe2O4 纳米流(CFAP),以响应 TME 提示,从而在超声(US)照射下加剧氧化还原失衡,实现有效的抗肿瘤治疗。具有类似葡萄糖氧化酶(GOx)活性的 CFAP 被肿瘤细胞吸收后,可促进葡萄糖耗竭并促进 H2O2 的产生。CFAP 中的 Co(II)/Co(III) 和 Fe(II)/Fe(III) 等多价元素具有很强的 Fenton 样活性,能从 H2O2 生成羟基。另一方面,能带结构 CFAP 在 US 作用下生成 1O2 方面具有优势,这主要依赖于 e-/h+ 对分离和重组的增强和延缓。此外,模拟催化酶的 CFAP 还能与细胞膜上的 H2O2 反应生成分子氧,这可能会增加消耗氧气的反应(如葡萄糖氧化和声敏化过程)的产物产量。除了大量产生活性氧外,CFAP 还能耗尽谷胱甘肽,破坏细胞内的氧化还原平衡。CFAP 能造成严重的免疫性细胞死亡,并有效抑制实体瘤,这证明了这种异质结构的临床有效性,并可能激发更多相关的疾病治疗设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信